
www.manaraa.com

Virginia Commonwealth University Virginia Commonwealth University 

VCU Scholars Compass VCU Scholars Compass 

Theses and Dissertations Graduate School 

2010 

Interplay Between Keratin and Vimentin Expression in Oral Cancer Interplay Between Keratin and Vimentin Expression in Oral Cancer 

Mary Catherine McGinn 
Virginia Commonwealth University 

Follow this and additional works at: https://scholarscompass.vcu.edu/etd 

 Part of the Physiology Commons 

 

© The Author 

Downloaded from Downloaded from 
https://scholarscompass.vcu.edu/etd/49 

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has 
been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. 
For more information, please contact libcompass@vcu.edu. 

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/69?utm_source=scholarscompass.vcu.edu%2Fetd%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/49?utm_source=scholarscompass.vcu.edu%2Fetd%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


www.manaraa.com

School of Medicine  
Virginia Commonwealth University  

 
 
 

This is to certify that the thesis prepared by Mary Catherine McGinn entitled 
INTERPLAY BETWEEN KERATIN AND VIMENTIN EXPRESSION IN ORAL 

CANCER has been approved by his or her committee as satisfactory completion of the 
thesis or dissertation requirement for the degree of Master of Science 

 
 
 
 
Dr. Andrew Yeudall, BDS, Ph.D., Director of Thesis, Philips Institute VCU School of Dentistry 
 
 
 

Dr. Zendra Zehner, Ph.D., VCU School of Medicine Department of Biochemistry 
 
 
 

Dr. Joseph Feher, Ph.D., VCU School of Medicine Department of Physiology & Biophysics 
 
 
 

Dr. Roland Pittman, Ph.D., VCU School of Medicine Department of Physiology & Biophysics 
 
 
 

Dr. Louis DeFelice, Ph.D., Program Director, VCU School of Medicine 
 
 
 
 
May 5, 2010 



www.manaraa.com

 

© Mary Catherine McGinn 2010 

All Rights Reserved 

 



www.manaraa.com

 

INTERPLAY BETWEEN KERATIN AND VIMENTIN EXPRESSION IN ORAL 

CANCER 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science at Virginia Commonwealth University. 
 

by 

 

MARY CATHERINE MCGINN 
Bachelor of Science, The College of William and Mary, 2007 

 

 

Director: DR. ANDREW YEUDALL 
PHILIPS INSTITUTE, VCU SCHOOL OF DENTISTRY 

 

 

 
 
 

 

 

 

 

 

Virginia Commonwealth University 
Richmond, Virginia 

May, 2010 



www.manaraa.com

ii 

Acknowledgement 

I would first like to acknowledge my advisor, Dr. Andrew Yeudall, for his 

guidance, support, and encouragement. Thank you for providing me with an amazing 

learning opportunity by allowing me to work in your lab. I would like to thank Dr. 

Zendra Zehner for her support during the coursework and collaboration on my research 

project. I would like to extend my appreciation to my committee members, Dr. Joseph 

Feher and Dr. Roland Pittman. To Dr. Hiro Miyazaki, thanks for answering questions in 

the lab and always providing questions to keep me thinking. Many thanks to Huixin 

Wang for her friendship, outstanding patience, and willingness to help all of us in the lab. 

I would also like to thank the other members of my lab for keeping each day exciting  -

Shahrzad Firouzabadian, Eunmee Lee, Mi-Yon Choi, Crystal Cunningham, Banks Allen, 

and Steven Christofakis. Furthermore, thanks to Emily Jumet and Brian Mahoney for 

being my graduate school study buddies.  

Additionally, thank you to Jenny Hoyt for being my graduate school “mentor” 

and best friend. To Chris Smith, thank you for your friendship, support, and motivation 

throughout this whole experience. Thank you Aunt Carolyn for the meals, cards, and 

being my family here in Richmond. To my brother James, I am so proud of you and glad 

that we are sharing this graduation year. To my sister Malone, thanks for being the best 

sister and friend I could ever ask for, sharing my love of music, and always being there 

for me.  Lastly, thank you to my parents for your endless love and support.  You two 



www.manaraa.com

iii 

always have the best advice, and I could not have done this without you. I am blessed to 

have you as my role models. I love you.  

 
 



www.manaraa.com

iv 

Table of Contents 
Page 

Acknowledgements ..............................................................................................................ii 

List of Tables ....................................................................................................................viii 

List of Figures .....................................................................................................................ix 

List of Abbreviations ..........................................................................................................xi 

List of Materials ................................................................................................................xiii 

Abstract .............................................................................................................................xiv 

Chapter 

1 Introduction........................................................................................................1 

Cancer and Tumor Growth............................................................................1 

Metastasis ......................................................................................................3 

Head and Neck Cancer ..................................................................................5 

Intermediate Filaments ..................................................................................7 

Vimentin ........................................................................................................8 

Vimentin Gene Expression............................................................................9 

Keratin ...........................................................................................................9 

Epithelial to Mesenchymal Transition.........................................................10 

Regulation of Vimentin ...............................................................................11 

Nuclear Factor-?B (NF-?B) ........................................................................14 

NF-?B – Involvement in Cancer .................................................................16 



www.manaraa.com

v 

Wnt-dependent Signaling Pathway .............................................................18 

ß-catenin ......................................................................................................22 

The Dickkopf Family ..................................................................................23 

Dickkopf-3...................................................................................................23 

Previous Research in Our Lab.....................................................................24 

Hypothesis ...................................................................................................26 

Aims of Current Study.................................................................................26 

2 Methods............................................................................................................28 

Cell Culture .................................................................................................28 

Growth Factors and Inhibitors .....................................................................28 

Plasmids.......................................................................................................28 

Bacterial Transformation.............................................................................29 

Isolating Colonies and Establishing Liquid Cultures ..................................29 

Small Scale DNA Preparations ...................................................................29 

Larger Scale DNA Preparations ..................................................................31 

Nuclear Transfection...................................................................................32 

Transient Transfection.................................................................................32 

Western Blot................................................................................................33 

Immunofluorescence ...................................................................................34 

MTT Assay..................................................................................................35 



www.manaraa.com

vi 

Cell Proliferation Assay ..............................................................................35 

RNA Extraction...........................................................................................36 

cDNA Synthesis ..........................................................................................36 

Polymerase Chain Reaction.........................................................................37 

Quantitative Real-Time Polymerase Chain Reaction..................................38 

Immunoprecipitation ...................................................................................38 

Cell Migration Assay...................................................................................39 

Statistical Analysis ......................................................................................39 

3 Results ..............................................................................................................40 

Overexpression of Vimentin in Vimentin-Negative HN4 Cells ..................40 

Confirmation of Expression of Vimentin Mutants in 293T Cells ...............49 

Effect of Vimentin Overexpression in HN4 Cells on Cell Growth.............51 

Effect of Vimentin Overexpression in HN4 Cells on Cell Motility............54 

Effect of Vimentin Overexpression in HN4 Cells on the Presence of ß-

catenin....................................................................................................56 

Effect of Vimentin Overexpression in HN4 Cells on the Presence of E-

cadherin .................................................................................................58 

NF-?B Inhibitor Effects Vimentin-Positive HN12 Cells ............................60 

5-Aza-dC Affects Vimentin-Positive HN12 Cells ......................................64 



www.manaraa.com

vii 

Combined Effect of NF-?B Inhibitor and 5-Aza-dC on Vimentin-Positive 

HN12 Cells ............................................................................................67 

Effects of DKK3 shRNA Expression in Vimentin-Negative HN4 Cells ....74 

4 Discussion........................................................................................................80 

Aims of the Current Study...........................................................................80 

Overexpression of Vimentin in Vimentin-Negative HN4 Cells ..................80 

Overexpression of Vimentin is Important in HN4 Biological Properties ...83 

Effect of Vimentin Expression on E-cadherin in HN4 Cells ......................84 

Inhibition of NF-?B Affects Growth of HN12 Cells ...................................86 

5-Aza-dC Affects Growth of HN12 Cells ...................................................87 

DKK3 Knockdown in Vimentin-Negative Cells.........................................90 

5 Future Studies ..................................................................................................91 

Literature Cited ..................................................................................................................93 

Vita...................................................................................................................................100 

 



www.manaraa.com

viii 

 
List of Tables 

Page 

Table 1: Wnt Signaling Pathways and Wnt Ligands for Activation. .................................18 

Table 2: Primary Antibodies for Western Blotting. ...........................................................34 

Table 3: Primary Antibodies for Immunofluorescence. ....................................................34 



www.manaraa.com

ix 

List of Figures 
Page 

Figure 1: Canonical NF-?B Signaling Pathway.................................................................15 

Figure 2: Wnt/ß-catenin Signaling Pathway......................................................................19 

Figure 3: Presence or Absence of DKK3 in Wnt Signaling ..............................................26 

Figure 4: Vimentin is expressed in HN4 cells transfected with the plasmid encoding wild-

type vimentin......................................................................................................................42 

Figure 5: Vimentin is expressed in HN4 cells transfected with the plasmid encoding a 

PKCe-phosphomimetic (aspartate mutant) version of vimentin. .......................................43 

Figure 6: Vimentin is expressed in HN4 cells transfected with the plasmid encoding an 

unphosphorylatable (alanine mutant) version of vimentin ................................................44 

Figure 7: Vimentin and keratin 14 expression in HN4 vimentin-transfected cells............45 

Figure 8: Keratin 14 expression is decreased in HN4 vimentin-transfected cells .............46 

Figure 9: Vimentin expression in HN4 vimentin mutant cells using  

immunofluorescence ..........................................................................................................47 

Figure 10: Keratin 14 expression in HN4 vimentin mutant cells using 

immunofluorescence ..........................................................................................................48 

Figure 11: Vimentin expression in transiently transfected 293T cells confirmed by qRT-

PCR....................................................................................................................................50 

Figure 12: Expression of vimentin mutants affects cell growth........................................52 

Figure 13: Expression of vimentin mutants affects cell proliferation................................53 



www.manaraa.com

x 

Figure 14: Expression of vimentin mutants affects cell motility.......................................55 

Figure 15: ß-catenin expression in HN4 transfected cells using immunofluorescence .....57 

Figure 16: E-cadherin expression in HN4 transfected cells using immunofluorescence ..59 

Figure 17: Dose-response of HN12 cells with NF-?B inhibitor ........................................61 

Figure 18: NF-?B inhibition leads to reduced vimentin expression in HN12 cells...........62 

Figure 19: NF-?B inhibition leads to reduced proliferation of HN12 cells.......................63 

Figure 20: 5-Aza-dC leads to reduced cell growth in HN12 cells.....................................65 

Figure 21: 5-Aza-dC leads to reduced proliferation of HN12 cells ...................................66 

Figure 22: NF-?B inhibitor and 5-Aza-dC reduce HN12 cell growth...............................69 

Figure 23: Growth change as a result of NF-?B inhibitor or 5-Aza-dC ............................70 

Figure 24: NF-?B inhibitor and 5-Aza-dC reduce HN12 cell proliferation ......................71 

Figure 25: Vimentin expression is decreased in HN12 cells treated with NF-?B inhibitor 

or 5-Aza-dC........................................................................................................................72 

Figure 26: Vimentin expression in HN12 cells treated with NF-?B inhibitor or 5-Aza-dC 

using immunofluorescence ................................................................................................73 

Figure 27: Expression of DKK3 in HN12 and HN4 cells .................................................76 

Figure 28: shRNA-mediated inhibition of DKK3 .............................................................77 

Figure 29: DKK3 and vimentin expression in HN4 cells expressing DKK3 shRNA.......78 

Figure 30: DKK3 is secreted by HNSCC cells ..................................................................79 

 



www.manaraa.com

xi 

List of Abbreviations 

2-mercaptoethanol 2-hydroxyethylmercaptan; ß-mercaptoethanol 

5-Aza-C  5-aza-2’-deoxycytidine 

BSA   Bovine Serum Albumin 

cDNA   Complementary Deoxyribonucleic Acid 

CK1a   Casein Kinase 1a 

DAPI   4’, 6-diamidino-2-phenylindole 

DKK   Dickkopf 

DMEM  Dulbecco’s Modification of Eagle’s Medium 

DMSO   Dimethyl Sulfoxide 

DNA   Deoxyribonucleic Acid 

dNTP   Deoxyribonucleotide Triphosphate 

Dvl   Dishevelled 

EDTA   Ethylene Diamine Tetra Acetic Acid 

EMT   Epithelial to Mesenchymal Transition 

FBS   Fetal Bovine Serum 

FITC   Fluorescein Isothiocyanate 

Fzd   Frizzled 

GFP   Green Fluorescent Protein 

GSK3ß  Glycogen Synthase Kinase 3ß 

HNSCC  Head and Neck Squamous Cell Carcinoma 

I?B   Inhibitor ?B  

LEF   Lymphoid Enhancer Factor 

LRP   Low-density Lipoprotein Receptor 

MMP   Matrix Metalloprotease 

mRNA   Messenger RNA 



www.manaraa.com

xii 

MTT  (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

 bromide 

NaCl  Sodium Chloride 

NaOH   Sodium Hydroxide  

NF-?B   Nuclear Factor-?B 

NTC   Non-targeting Control 

PAGE   Polyacrylamide Gel Electrophoresis 

PBS   Phosphate Buffered Saline 

PBST   Phosphate Buffered Saline + Triton-X 

PCR   Polymerase Chain Reaction 

PKA   Protein Kinase A 

PKC   Protein Kinase C 

PMSF   Phenylmethylsulfonyl Fluoride 

PVDF   Polyvinylidene Fluoride 

qRT-PCR  Quantitative Real-time PCR 

RNA   Ribonucleic Acid 

SDS   Sodium Dodecyl Sulphate 

sFRP   Secreted Frizzled Related Protein 

shRNA  Short Hairpin RNA 

TCF   T-cell factor 

Tris   Tris (Hydroxymethyl) Methylamine 

TTBS   Tween-Tris-Buffered Saline 

Tween 20  Polyoxyethylene(20)sorbitan Monolaurate 

WIF   Wnt Inhibitory Factor 



www.manaraa.com

xiii 

List of Materials 
 

Bacterial Media 
 

2 x YT Medium: 1.6% tryptone, 1% yeast, and 0.5% sodium chloride, 50µg/mL 
kanamycin. 
 

Solutions for the Preparation of DNA 
 

1. Cell Resuspension Solution: 50 mM Tris-HCl pH 7.5, 10 mM EDTA, 100 
 µg/mL RNaseA 

 
2. Cell Lysis Solution: 0.2 M NaOH, 1% SDS 
 
3. Neutralization Solution: 4.09 M guanidine hydrochloride, 0.759 M 

 potassium acetate, 2.12 M glacial acetic acid 
 

Solutions for Western Blotting 
 

1. Vimentin Lysis Buffer: 62.5 mM Tris-HCl pH6.8, 2% SDS, 5% ß-
 mercaptoethanol, 10% glycerol, 1 µL aprotonin, 1 µL leupeptin, 1 µL PMSF 

 
2. 1 x SDS-PAGE: 20 mM Tris-HCl pH 7.9, 100 mM NaCl, 70 mM EDTA, 2% 

 SDS 
 
3. 1 x Transfer Buffer: 20 mM pH 7.9, 100 mM NaCl, 70 mM EDTA, and 20% 

 methanol 
 

 



www.manaraa.com

xiv 

 
 
 
 

Abstract 
 
 
 

INTERPLAY BETWEEN KERATIN AND VIMENTIN EXPRESSION IN ORAL 

CANCER 

By Mary Catherine McGinn, M.S. 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2010 
 

Major Director:  Dr. Andrew Yeudall 
Philips Institute, VCU School of Dentistry 

 
 

 
 
Previous research in our laboratory found that inhibiting expression of vimentin, a 

marker of epithelial-to mesenchymal transition, inhibited cell growth and motility in vitro 

and in vivo. Tumors derived from vimentin knockdown cells showed features of epithelial 

redifferentiation and increased expression of differentiation-specific keratins. It is 

unknown what causes re-expression of keratins when vimentin is inhibited. Although, 

canonical Wnt signaling may activate NF-?B and repress of keratin and/or induce vimentin 

expression through ß-catenin. We hypothesize that ownregulation of differentiation-

specific keratins contributes to tumor progression, mediated directly or indirectly by 
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expression of vimentin. Vimentin-negative HN4 cells were transfected with plasmids 

encoding wild-type, PKCe-phosphomimetic, or unphosphorylatable versions of vimentin. 

Expression of vimentin was confirmed by western blot and immunofluorescence. Effects 

on cell growth and motility were determined using MTT, cell proliferation, and wound-

closure assays. These results indicate that mutation of vimentin PKCe-phosphorylation 

sites cause changes in proliferation and filament assembly. Treatment of cells with an NF-

?B inhibitor or 5-Aza-C, which allows re-expression of the Wnt inhibitor DKK3, led to a 

decrease in proliferation. These results suggest that inhibiting Wnt signaling removes the 

inhibition on GSK-3ß and prevents activation of NF-?B, which decreases proliferation.    
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Introduction 
 

Cancer and Tumor Growth 

 Cancer cells develop due to changes in normal controls that regulate cell 

proliferation and homeostasis. There are genetic regulatory systems that maintain a balance 

between cell birth and death through growth signals, growth inhibitory signals, and death 

signals (Lodish, 2004). Normal control of cell division is maintained by extracellular 

growth factors, and errors in generating, regulating, or recognizing these growth factors 

can result in cancer (Lehninger, Nelson, & Cox, 2005). Six hallmarks have been generated 

that classify changes leading to cancer cell growth. These six characteristics are “self 

sufficiency in growth signals, insensitivity to growth- inhibitory (antigrowth) signals, 

evasion of programmed cell death (apoptosis), limitless replicative potential, sustained 

angiogenesis, and tissue invasion and metastasis” (Hanahan & Weinberg, 2000). Most 

human tumors possess these six traits. Normal cells require growth signals before 

transitioning from the quiescent to proliferative state, but tumor cells are not, in many 

cases, dependent on these growth signals, as they frequently create their own. Many of the 

cell surface receptors that induce growth signals are deregulated during tumorigenesis. 

Additionally, normal tissues have antiproliferative signals to maintain homeostasis, and 

these operate through two mechanisms. One mechanism forces cells to exit the cell cycle 

and into a quiescent state. These cells may reenter the cell cycle in the presence of 
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appropriate extracellular signals. The other mechanism prevents the cell from ever 

proliferating again, and it enters a postmitotic state. Tumor cells have acquired 

mechanisms to bypass this terminal differentiation (Hanahan & Weinberg, 2000). 

Mutations in two classes of genes are frequently involved in cancer. These genes 

are proto-oncogenes and tumor suppressor genes. Proto-oncogenes are normally involved 

in cell growth, but mutations can change them into oncogenes causing excessive growth 

(Lodish, 2004). These oncogenes can be activated by genetic or epigenetic factors. Genetic 

changes occur due to mutation, deletion, amplification, or translocation. A single 

mutational event can cause the proto-oncogene to contribute to cancer. Epigenetic factors 

are a result of heritable changes in the gene that operate outside changes in the DNA itself. 

This could be due to methylation or histone modification and may also influence the 

expression of oncogenes or tumor suppressor genes (Palmieri et al., 2009). On the other 

hand, tumor suppressor genes normally prevent growth. When mutations occur, these 

genes are inactivated which enables cells to proliferate with unregulated and self-sufficient 

growth. In order for tumor suppressor genes to contribute to cancer, both alleles must be 

mutated, so this requires two mutational events (Lodish, 2004). The presence of 

environmental carcinogens can cause changes in these tumor suppressor genes and proto-

oncogenes, which results in malignant transformation of the cells. Telomerase, which is 

involved in immortalization, shows reactivation in approximately 90% of head and neck 

squamous cell carcinomas. These initial changes cause further genetic instability and lead 

to characteristics of malignant cells (Stadler, Patel, Couch, & Hayes, 2008). 
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Cancer is the result of phenotypic and genetic changes that ultimately result in 

aggressive behavior. A normal cell gets mutated which causes increased proliferation. 

Further mutations lead to the formation of a benign neoplasm or “new growth.” The initial 

neoplasm usually appears in an organ as a solid mass. With increasing chromosomal 

changes, a carcinoma is formed (Muir & Anderson, 1985). A carcinoma is a malignant 

tumor originating from the epithelia and accounts for over ninety percent of malignant 

tumors. Tumors are very common, but they usually do not pose any threat to the host 

because they are small and localized. These tumors are termed benign. The cellular 

makeup of benign tumors is very similar to normal cells, and their cell-adhesion molecules 

keep the tumor contained to the original site (Lodish, 2004). Benign tumors are generally 

encapsulated and slow growing. From the microscopic level, they are usually well 

differentiated and uniform throughout (Muir & Anderson, 1985). However, a malignant 

tumor contains cells that grow rapidly. This type of tumor is also known as cancer. Their 

ability to invade and spread to distant areas differentiates malignant tumors from benign 

tumors (Lodish, 2004). 

 

Metastasis 

 Metastasis is the process where primary tumor cells migrate to a different location 

and form secondary tumors. The tissues most likely to be attacked are those that create 

growth factors and generate new vasculature. These tissues include bone, blood vessels, 

and the liver. The process of metastasis can be divided into several steps. First, the 

individual tumor cells separate from the primary tumor.  These malignant cells must 
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permeate the basement membrane, get through the extracellular matrix, and intravasate 

into the blood or lymphatic vessels (Howell & Grandis, 2005). Breaking down the 

basement membrane enables the tumor cells to enter the blood, but only a small percentage 

survive to form a secondary tumor (Lodish, 2004). From this stage, the cells can migrate to 

different sites. Before a metastatic tumor is formed, the cells must invade the target organ 

(Howell & Grandis, 2005). The process requires communication with tumor cells, stromal 

cells, extracellular matrix, and vasculature mediated by growth factors, cytokines, and 

enzymes (Miyazaki et al., 2006).  Malignant tumors have atypical structure, and they are 

usually less differentiated. The cells have a loss of polarity and tend to have abnormal 

mitotic figures (Muir & Anderson, 1985). 

 Several proteins are involved in making cells capable of invasion and metastasis. 

Two classes are cell-cell adhesion molecules and integrins. Cell adhesion molecules are 

found on all cells and provide a connection between the extracellular matrix and 

cytoskeleton. These molecules are involved in communication between the interior and 

exterior of the cell and processes such as growth, proliferation, and migration. Integrins are 

adhesion receptors that are responsible for adhesion to the adjacent matrix (Lyons & Jones, 

2007). Cadherins are a part of the intracellular adhesions in normal cells (Kramer, Shen, & 

Zhou, 2005). As the cells migrate through the extracellular matrix, they change these 

intracellular adhesions. E-cadherin, which is expressed in epithelial cells, is frequently 

altered in cancers. This is done by inactivating E-cadherin or ß-catenin genes, repressing 

the transcriptional activity, or degrading the cadherin extracellular domain. Experiments 

show that the loss of E-cadherin function is a factor in invasion and metastasis by epithelial 



www.manaraa.com

5 

cancers. Carcinomas can also increase their invasion potential by altering integrin 

expression (Hanahan & Weinberg, 2000). The integrin receptors interacting with the 

extracellular matrix ligands, in addition to changes in the cadherins, result in cytoskeleton 

remodeling by Rho family members (Kramer et al., 2005). Extracellular proteases also 

play a role in invasion and metastasis. Protease gene expression is increased, protease 

inhibitors are decreased, and zymogen forms of proteases are activated (Hanahan & 

Weinberg, 2000). 

 

Head and Neck Cancer 

 Cancer causes approximately one-fifth of the deaths annually in the United States, 

with 100 to 350 deaths out of every 100,000 people worldwide (Lodish, 2004). Squamous 

cell carcinoma is the most prevalent form of head and neck cancer. In most cases, cells 

derived from these tumors are anchorage dependent and usually do not grow in semi-solid 

cultures. This emphasizes the role of cellular and extracellular matrix interactions (Ziober, 

Silverman, & Kramer, 2001). Head and neck squamous cell carcinoma (HNSCC) is also 

the fifth most prevalent form of cancer in the world (Mandal et al., 2008). It involves 

cancer of the oral cavity, pharynx, and larynx. Overall, only fifty percent of patients 

diagnosed with head and neck cancer will survive for five years. This survival rate is lower 

for patients presenting with more advanced cancer and around 4% for patients with stage 

IV hypopharyngeal lesions (Miyazaki et al., 2006). However, there is an eighty-two 

percent five-year survival rate for patients with localized oral cancer (Oral cancer.2009). 

The overall low survival rate is due to cancer reoccurrence and local invasion. 
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Additionally, head and neck cancer is commonly in an advanced stage when it is 

recognized and treated (Ziober et al., 2001). This form of cancer frequently spreads to the 

lymph nodes of the neck due to the invasive nature of the cells and the amount of 

lymphatic drainage from the oral cavity (Kramer et al., 2005). In 2009, it was estimated 

that there would be 35,720 new cases and 7,600 deaths from oral cancer in the United 

States (Oral cancer.2009). 

 There are several risk factors for head and neck cancer, the most well known of 

which is tobacco use, and HNSCC was one of the first tumor types found to have P53 

mutation due to tobacco (Stadler et al., 2008). Men are more likely to have oral cancer than 

women, because traditionally men abuse alcohol and tobacco for longer periods of time. 

Oral cancer is more common after age thirty-five, with half the patients diagnosed over age 

sixty-eight. Of the patients diagnosed with oral cancer, 90% use tobacco, and the 

likelihood of developing cancer increases with the amount and duration of time the tobacco 

is used. Additionally, 75 to 80% of patients with oral cancer drink alcohol regularly (Oral 

cancer.2009). 

 Surgery, radiation therapy, chemotherapy, and newly targeted therapy are the 

current treatment options for patients with HNSCC (Oral cancer.2009). Surgery is the 

primary form of treatment, but this can have a large effect on the patient’s physical 

appearance (Yeudall et al., 2005). Radiation therapy is frequently used for small cancers, 

but can be combined with other treatment options for larger cancers. Post-operative 

radiotherapy is also used to kill remaining cells that have not been removed surgically 

(Oral cancer.2009). Unfortunately, HNSCC does not respond well to radiation or 
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chemotherapy treatments (Yeudall et al., 2005). One targeted therapy used for HNSCC 

involves the epidermal growth factor receptor, which is frequently upregulated in this 

cancer and allows the cells to have resistance against radiation and chemotherapy (Oral 

cancer.2009). Immunotherapy is also emerging as a form of treatment for HNSCC 

(Rapidis & Wolf, 2009). Since an effective treatment does not exist, early detection and 

prevention have a large role in preventing death as a result of HNSCC (Yeudall et al., 

2005).  

 

Intermediate Filaments 

 Intermediate filaments are a class of filaments of around 10 nm in diameter making 

them smaller than microtubules and larger than microfilaments. Microtubules, 

microfilaments, and intermediate filaments are the main cytoskeletal components in 

mammalian cells. Intermediate filaments are a part of most differentiated cells and are 

present in the nucleus and cytoplasm. They are dynamic structures that are constantly 

reassembling and interacting with the cytoskeleton and cellular organelles (Parry & 

Steinert, 1995). There are around seventy genes in the human genome encoding different 

intermediate filaments, and they have been categorized into different types. Type I consists 

of acidic keratins, and all other keratins (neural and basic) are type II. Keratins are the most 

numerous and complex intermediate filaments. They cannot form polymers with other 

intermediate filaments. Keratins are only able to form heteropolymers, because both type I 

and type II keratins are required for assembly. Desmin, vimentin, periphin, and GFAP 

(glial filament acidic protein) are all type III intermediate filament proteins. Type III 



www.manaraa.com

8 

proteins can form homopolymers and heteropolymers with other proteins in the type III 

family. Type IV intermediate filament proteins are associated with nerve cells and affect 

the growth of axons. This type includes a- internexin and neurofilament proteins NF-L, NF-

M, and NF-H. These types of intermediate filament proteins are further grouped according 

to their sequence homology. Group one consists of the keratins. Type III and IV make up 

group two, while the third group contains the lamins. The primary function for 

intermediate filament proteins is maintaining the cell and tissue structure. The organization 

of organelles and proteins inside the cell is also affected by intermediate filaments. 

Although there is great variety between the different intermediate filaments, they have the 

same basic structure. There is a central a-helical domain that is surrounded by a non-

helical N-terminal (“head”) domain and a C-terminal (“tail”) domain. The “head” and 

“tail” domains vary in size and primary amino acid sequence among the different types of 

intermediate filaments. However, the central domain remains the same throughout the 

types (Minin & Moldaver, 2008). 

 

Vimentin 

 Vimentin is a 54 kDa type III intermediate filament that is found in fibroblasts, 

lymphocytes, endothelial cells, and most mesenchymal tissues. It is also present in a lot of 

cells during early development. Vimentin filaments combine to create a cytoskeletal 

network originating at the nucleus and spreading to the plasma membrane throughout the 

cytoplasm (Paramio, 2006). Vimentin has been shown to move towards the cell surface 

and the nucleus. It also has the ability to move in multiple directions along the microtubule 
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due to the motor proteins kinesin and dynein (Minin & Moldaver, 2008). Vimentin 

interacts with kinesin through a vimentin-associated protein. This interaction causes 

vimentin to move towards the microtubule plus-ends and the cell surface (Gyoeva & 

Gelfand, 1991). Vimentin also associates with dynein and dynactin, which are responsible 

for vimentin moving to the microtubule minus-ends and the cell nucleus (Eriksson et al., 

2004). Vimentin expression has been shown in breast cancer cell lines, and there are links 

between vimentin levels and invasive cervical cancer. The presence of vimentin has been 

reported in several human epithelial tumors including renal, thyroid, ovarian, and 

pulmonary carcinomas (Gilles et al., 1996). Vimentin has also been found overexpressed in 

invasive prostate cancer cells (Singh et al., 2003). 

 

Vimentin Gene Expression 

 Several transcriptional regulatory elements have been discovered that affect 

vimentin gene expression. The human vimentin gene has multiple transcription factor 

binding sites. These sites include “a consensus TATA box, a GC box indispensable for 

expression and interacting with Sp/XKLF factors, a PEA3 binding site, a NF-?B site, a 

repressor site, a tandem AP1 binding site, and an anti-silencer element” (Zhou, Kahns, & 

Nielsen, 2009). 

 

Keratin 

 Keratins form type I and type II intermediate filaments, and they are found in 

almost all epithelial cells. They are involved in physiological functions such as maintaining 
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the cell shape and assembling cell-substrate and cell-cell adhesion sites (Ghosh et al., 

2002). Keratins also help protect epithelial cells from stresses that could cause the cells to 

rupture. Their molecular weights range between 40 to 70 kDa (Gu & Coulombe, 2007), 

with K13, K14, and K15 around 50 kDa. The gene expression of keratins is 

developmentally regulated, thus different stages of development are characterized by 

different keratins. All keratin intermediate filaments include a type I and a type II filament. 

Additionally, K13, K14, and K15 are all expressed in non-keratinizing stratified squamous 

epithelia  (Chu & Weiss, 2002).  

 

Epithelial to Mesenchymal Transition 

 The process where epithelial cells become mobile by detaching from their normal 

junctions and start migrating is known as the epithelial to mesenchymal transition (EMT).  

EMT is considered a marker of tumor progression indicating invasive and metastatic 

carcinomas (Voulgari & Pintzas, 2009). Epithelial cells are characterized for being 

polarized and maintaining tight junction with their neighboring cells, which prevents 

movement. These cells are normally rich in keratin intermediate filaments, whereas 

mesenchymal cells do not possess the well-defined intracellular junctions and are motile 

(Guarino, 2007). These cells typically have a spindle- like structure and exhibit front-to-

back polarity, and vimentin is the major intermediate filament present in mesenchymal 

cells (Hollier, Evans, & Mani, 2009). EMT occurs during many developmental processes 

including gastrulation, as well as playing a large part in cancer progression. Several steps 

have defined the process. First, various signaling pathways are modified which determine a 
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group of cells that will undergo EMT. Next, the intracellular adhesions maintained by 

cadherins are lost along with the polarity markers. The cell has changes in the cytoskeleton 

that promote cell delamination, and ultimately, the basement membrane is disassembled 

(Levayer & Lecuit, 2008). For this reason, EMT is considered an important step leading to 

metastasis. At the molecular level, EMT is represented by a decrease in E-cadherin and 

cytokeratins with an increase in the mesenchymal marker vimentin (Lester, Jo, Montel, 

Takimoto, & Gonias, 2007).  

 

Regulation of Vimentin 

 The stability, structure, and assembly of intermediate filament polymers can be 

regulated by phosphorylation. Phosphorylation of intermediate filaments can also mediate 

interactions with other intermediate filament associated proteins and affect some tissue-

specific structural roles (Liao & Omary, 1996).  One study showed that the assembly-

disassembly balance of vimentin by phosphorylation could regulate activation of RhoA-

binding kinase a (Goto et al., 1998). A high constitutive protein phosphatase activity is 

paired with intermediate filaments, which implies these proteins have a larger phosphate 

turnover (Eriksson et al., 1992). With multiple high phosphorylation turnover sites on 

vimentin, PKA and PKC appear as the most likely regulatory kinases. By increasing 

phosphorylation at the sites mediated by PKA, there is disassembly into tetrameric 

subunits. The balance between vimentin polymers and depolymerized subunits and the 

turnover is regulated by kinase-phosphatase equilibrium. This is regulated by reversible 

phosphoryla tion at sites in the N-terminal part of vimentin. However, if Ser-38 and Ser-72 



www.manaraa.com

12 

were mutated, PKA-mediated phosphorylation of vimentin was decreased in vitro and 

disassembly was affected. Since some phosphorylation remained, this proved that other 

sites were still being phosphorylated by PKA. This suggests that all of the PKA sites play a 

role in the assembly state of vimentin (Eriksson et al., 2004). 

 Protein phosphorylation also plays a role in regulating integrins in motile cells. 

PKC is one serine/threonine kinase that regulates integrins, and this affects adhesion and 

migration (Woods, White, Caswell, & Norman, 2004). PKCe is responsible for a part of 

the endocytic pathway that allows integrin recycling to the plasma membrane. Without 

PKCe, fibroblasts decrease movement, and there is an emergence of ß1 integrin/PKCe-

containing vesicular structures, which resemble a transient recycling compartment. 

Research showed that vimentin was targeted for phosphorylation by PKCe in these integrin 

intracellular vesicles, and this phosphorylation controls the integrins exiting this 

compartment to the plasma membrane. When PKCe is inhibited, there is a decrease in 

acidic vimentin and a decrease in serine phosphorylation (Ivaska, Whelan, Watson, & 

Parker, 2002). It is likely that PKCe and vimentin are released from the vesicles as a 

complex. An experimental release assay showed Ser6 phosphorylation combined with the 

other serine residues in the amino-terminal of the PKC mediated cluster of vimentin had a 

positive effect. Further experiments showed that vimentin influences the migration of cells 

in a PKCe dependent manner because of the increase in migration seen in PKCe re-

expressing cells compared to PKCe null cells. An additional experiment mutated serine 

residues to alanine to analyze the importance of the N-terminus and the other PKC-sites on 

vimentin induced cell motility. The researchers also substituted the serines (S4, 6, 7, 8, 9) 
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with aspartate, which are negatively charged residues and mimic PKCe phosphorylation. 

The alanine mutation, which is unphosphorylatable, prevented motility, while the aspartate 

mutation restored motility. The alanine mutation interfered with vimentin filament 

assembly and caused a buildup of integrin and PKCe positive vesicles comparable to 

results when PKC activity is inhibited.  This showed that PKCe mediated phosphorylation 

at the N-terminus of vimentin plays a large role in PKCe dependent, vimentin induced cell 

motility. The mutant vimentin caused decreased recycling of integrins as well, which 

implies that endocytosed integrin/PKCe containing vesicles link with vimentin. These 

integrins exit and recycle to the plasma membrane from this vesicle dependent on PKC-

mediated phosphorylation of vimentin (Ivaska et al., 2005). 

 Another phosphorylation site identified on vimentin is Ser-72. Intermediate 

filament bridges are very common when there are mutations in Rho-kinase, PKC 

phosphorylation sites, and Ser-72. Of these three, mutation of vimentin at Ser-72 is the 

most critical mutation site. Experiments demonstrated that phosphorylation of vimentin at 

Ser-72 was not present in Aurora-B (K/R)- expressing cells, which implied that 

phosphorylation of vimentin at Ser-72 is controlled by Aurora-B. This phosphorylation by 

Aurora-B could be involved in segregation of vimentin filaments during cytokinesis. It was 

also suggested that cleavage furrow-specific intermediate filament phosphorylation could 

be mediated by both Rho-kinase and Aurora B (Goto et al., 2003). 
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Nuclear Factor-?B (NF-?B) 

NF-?B is a transcription factor widely recognized to be involved in carcinogenesis 

and control of the immune and inflammatory responses. NF-?B regulates a variety of 

target genes that are involved in cell proliferation, regulating apoptosis, facilitating 

angiogenesis, and inducing invasion and metastasis. It has a conserved 300 amino acid Rel 

homology domain in the N-terminus. This domain is involved in DNA binding, 

dimerization, and interacting with I?B proteins, which are inhibitory factors (Lee, Jeon, 

Kim, & Song, 2007). Inactive NF-?B proteins are prevalent in most cells, and they are 

contained in the cytoplasm in a complex with I?B. I?B kinase is involved in all of the 

extracellular signals that activate NF-?B. When activated by DNA damage, cytokines, or 

growth factor signaling, I?B kinase phosphorylates serine residues on I?B (Loercher et al., 

2004). Next, I?B is ubiquitinated and degraded by a proteasome, and NF-?B is exposed to 

nuclear- localization signals. This allows NF-?B to translocate to the nucleus and initiate 

transcription of a variety of target genes. Ultimately, the NF-?B signaling is stopped by a 

negative feedback loop. One of the genes NF-?B transcribes is I?B, so the level of I?B 

increases and binds with NF-?B in the nucleus, and the complex migrates back to the 

cytosol (Lodish, 2004). This is called the classical or canonical pathway and is triggered by 

infection or proinflammatory cytokines. The classical pathway is important for innate 

immunity and inhibiting apoptosis. The alternative or non-canonical pathway is initiated 

by members from the TNF cytokine family to activate IKKa homodimers by NF-?B-

inducing kinase. This pathway is a part of secondary lymphoid organ development and the 
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adaptive immune response. The atypical pathway does not require I?B and is initiated by 

UV radiation that damages DNA or doxorubicin (Lee et al., 2007). 

 

Figure 1: The canonical NF-?B signaling pathway.  
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Nuclear Factor-?B (NF-?B) – Involvement in Cancer 

NF-?B is capable of inducing several of the six hallmarks of cancer and has also 

been found constitutively activated in some cancer cells. This activation could result from 

several mechanisms. Viral onco-proteins are capable of constitutively activating NF-?B. 

Changes such as translocations, deletions, and mutations potentially interrupt the genes 

that regulate activation causing constant NF-?B activation. Proinflammatory cytokines 

stimulated by autocrine or paracrine feedback, as well as activation of signaling molecules 

can stimulate I?B activity resulting in constitutive activation of NF-?B. Supporting cancer 

cell proliferation, avoiding apoptosis, and amplifying tumor angiogenic and metastatic 

potential are all results of constitutively activated NF-?B transcription factors. NF-?B 

regulates cell proliferation by activating target genes that control growth factors and 

promote proliferation of lymphoid and myeloid cells. NF-?B is also linked to cyclin D1 

(Karin, Cao, Greten, & Li, 2002). Cyclin D1 is a G1 specific cyclin, which promotes 

progression through the restriction point during the G1 phase of the cell cycle (Kim & 

Diehl, 2009). There is a NF-?B site in the cyclin D1 promoter, and this initiation of cyclin 

D1 supports the proliferation of mammary epithelial cells throughout pregnancy (Karin et 

al., 2002). There is overexpression of cyclin D1 in about 80% of HNSCC. Experiments 

show that inhibiting NF-?B results in decreased cell cycle progression, and this can be 

reversed by transfection and expression of a cyclin D1 plasmid (Allen, Ricker, Chen, & 

Van Waes, 2007). NF-?B is also able to inhibit apoptosis. Several anti-apoptotic factors 

induced by NF-?B include caspase-8/FADD (FAS-associated death domain)- like IL-1ß 

converting enzyme (FLICE) inhibitory protein (cFLIP) and members of the BCL2 family. 
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Constitutively activated NF-?B stops the apoptotic response to anticancer drugs and 

radiation. NF-?B anti-apoptotic effects can facilitate the formation of neoplasms by 

making cells that have had chromosomal rearrangements or other DNA damage more 

resistant to cell death. Additionally, chemokines play an important role in angiogenesis, 

and cells with increased levels of NF-?B have elevated production of some proangiogenic 

chemokines. This results in greater migratory activity. IL-8 is a chemokine regulated by 

NF-?B that is involved in enhancing angiogenesis (Karin et al., 2002). It has a NF-?B 

binding site in its promoter, which is elevated in patients with HNSCC (Allen et al., 2007). 

Also, activation of NF-?B plays a role in destruction of the extracellular matrix by cancer 

cells (Karin et al., 2002). Blocking NF-?B activity has shown decreased angiogenesis, 

invasion, and metastasis (Lee et al., 2007). Furthermore, matrix metalloprotease-9 (MMP-

9) is commonly overexpressed in HNSCC. MMP-9 requires NF-?B for expression, and 

higher levels of MMP-9 are associated with nodal metastasis. Furthermore, cigarette 

smoke condensate causes NF-?B activation by phosphorylation and degradation of I?B, 

which is consistent with why smoking is a risk factor for HNSCC (Allen et al., 2007). 

Since NF-?B plays a role in inhibiting apoptosis and promoting tumor progression 

and is found constitutively activated in many cancers, NF-?B inhibitors could be useful in 

cancer therapy. However, NF-?B inhibitors are not very specific and inhibit other 

necessary signaling systems. Since NF-?B is activated by a variety of pathways, the 

likelihood of a single inhibitor to affect all tumors is low (Lee et al., 2007). Current 

inhibitors target the proteosome, I?B, and kinases upstream with a role in NF-?B 

activation. Clinical and preclinical studies have shown anticancer activity with these 
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agents. Bortezomib (PS-341) inhibits the proteasome and has improved results with 

radiation in metastatic HNSCC (Ferris & Grandis, 2007). This drug has shown decreased 

expression of cyclin D1, Bcl-XL, and IAP-1, which are all regulated by NF-?B in HNSCC 

(Allen et al., 2007). Inhibition of NF-?B has been shown to stop proliferation, cell survival, 

migration, angiogenesis, and tumorigenesis. All of this suggests that NF-?B modifies the 

gene expression profile and malignant phenotype (Loercher et al., 2004).  

 

Wnt-dependent Signaling Pathway 

 The Wnt-dependent signaling pathways consist of three molecular pathways 

downstream of the Wnt/Frizzled (Fzd) interaction. The “canonical” Wnt pathway involves 

Wnt and ß-catenin. The “non-canonical” pathways consist of Wnt/Ca2+ and Wnt/polarity.  

Wnt Pathway Wnt Ligands for Activation 

Wnt/ß-catenin - “canonical” Wnt 1, 3A, 8 and 8B 

Wnt/Ca2+ - “non canonical” Wnt 4, 5A, and 11 

Wnt/polarity - “non canonical” Wnt 4, 5A, and 11 

Table 1: Wnt Pathways and Wnt Ligands for Activation 

 

Although each pathway is different, they share the same initial step of the Wnt 

ligand binding to the appropriate Fzd receptor. The Fzd receptor is a seven pass 

transmembrane receptor. The human genome contains nineteen Wnt ligands and ten 

different members of the Fzd seven-transmembrane receptor family. There are four 
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families of Wnt antagonists that have been assigned to two groups based on their mode of 

action. Secreted Frizzled related protein (sFRP) family, Wnt inhibitory factor-1 (WIF-1) 

and Cerberus are the first group. This group inhibits Wnt signaling by directly binding to 

the Wnt molecules. The Dickkopf (DKK) family makes up the second group, and they 

inhibit Wnt signaling by binding to the LRP5/LRP6 component of the Wnt receptor 

complex (Janssens, Janicot, & Perera, 2006). The Wnt signaling pathway is involved in 

several important developmental events, including brain development, limb patterning, and 

organogenesis. This pathway also regulates formation of osteoblasts and controls stem 

cells. Interruptions in this signaling pathway are found in multiple cancers (Lodish, 2004). 

 

Figure 2: The Wnt/ß-catenin signaling pathway. (Left) A schematic showing the absence 

of a Wnt ligand. (Right) A schematic showing the presence of a Wnt ligand. 
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 ß-catenin, a cytoplasmic protein, is the central molecule in the Wnt/ß-catenin 

pathway. This pathway affects several cellular processes including cell adhesion, growth, 

and differentiation (Du et al., 2009). For this pathway, an additional single-pass 

transmembrane protein from the low-density lipoprotein receptor family (LRP5 or LRP6) 

serves as a co-receptor of the seven transmembrane Fzd receptors to conduct the Wnt 

signal. Activation of the pathway begins with Wnt binding to the receptor complex 

consisting of the Fzd receptor and LRP co-receptor (Janssens et al., 2006). Wnt signaling 

inhibits the multi-protein ß-catenin degradation complex. This complex is formed by the 

scaffold protein axin, the serine/threonine kinase glycogen synthase kinase 3ß (GSK3ß), 

the tumor suppressor protein APC, and ß-catenin (Kühl, 2003). Once Wnt is bound, 

dishevelled (Dvl) is phosphorylated, and its relationship with axin inhibits GSK3ß and 

casein kinase 1a (CK1a) from phosphorylating important substrates such as ß-catenin. 

Phosphorylation of ß-catenin is required for its degradation. Without phosphorylation, ß-

catenin localizes to the nucleus, forms a complex with TCF/LEF (T-cell factor/lymphoid 

enhancer factor) transcription factors and other co-activators that allow expression of 

downstream target genes. When the Wnt/Fzd signal is not present, GSK3ß and CK1a 

phosphorylate ß-catenin, which targets it for degradation. Thus, ß-catenin will not collect 

in the nucleus, so TCF/LEF proteins serve as transcriptional repressors (Janssens et al., 

2006). 

 Multiple studies have shown that abnormal Wnt/ß-catenin signaling is involved in 

human cancer. In colon cancer, a mutation in APC causes ß-catenin to buildup in the 

cytoplasm and enter the nucleus. This causes increased proliferation and carcinogenesis by 
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ß-catenin interacting with TCF-4/LEF (Du et al., 2009). A transgenic mouse model has 

suggested that Wnt-1 expression supports tumor growth, and there is evidence in human 

breast cancer showing Wnt signaling promotes tumor development. When Wnt1 is 

expressed, cells are resistant to cancer therapies based on apoptosis by inhibiting ß-

catenin/TCF mediated transcription. Studies have shown advantages for blocking Wnt 

signaling in cancer patients, because inhibiting the Wnt/ß-catenin signaling pathways 

allows apoptosis and chemotherapy to work more effectively (Janssens et al., 2006). The 

Wnt/ß-catenin pathway has also been shown to regulate the transcription factor Twist in 

mouse mammary epithelial cell lines and tumors. Twist and Wnt1 can both inhibit 

lactogenic differentiation, which possibly causes mammary tumorigenesis (Howe, 

Watanabe, Leonard, & Brown, 2003). Wnt5a is involved in cell motility and invasion in 

metastatic melanoma, because when its receptor is blocked, PKC activity and cellular 

invasion are inhibited (Janssens et al., 2006). Wnt5a has been classified as a gene more 

prevalent in highly aggressive tumors compared to less aggressive tumors. This member of 

the Wnt family is independent of ß-catenin and acts through the non-canonical Wnt 

signaling pathway by binding a G-protein-coupled receptor to activate PKC and 

intracellular calcium. Increasing Wnt5a in melanoma cells resulted in increased PKC 

activation and motility and poor patient outcome. Wnt5a increases vimentin expression 

and decreases E-cadherin. Experiments demonstrated Wnt5a could increase metastatic 

melanoma through initiating EMT in a PKC-dependent manner (Dissanayake et al., 2007). 
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ß-catenin 

 In normal epithelial cells, ß-catenin is found in complexes with E-cadherin and 

plays a part in cell-cell adhesion. ß-catenin is also found accumulating in the cytoplasm or 

translocating to the nucleus. Both of these locations are associated with epithelial cell 

migration and EMT. Several genes are targeted by ß-catenin/TCF transcription, including 

MMP-7, c-myc, and cyclin D1 (Gilles et al., 2003). The ß-catenin promoter includes NF-

?B DNA binding motifs (Loercher et al., 2004). ß-catenin can act as an oncoprotein in 

several cancers, and mutations in the region of the gene encoding the amino terminal of ß-

catenin can affect the serine and threonine residues involved in phosphorylation by GSK3ß 

and CK1 that label ß-catenin for degradation. Both APC and axin are important for down-

regulation of ß-catenin (Janssens et al., 2006). Crosstalk also exists in bacterial-colonized 

HCT116 intestinal epithelial cells between NF-?B and ß-catenin. Constitutively expressed 

ß-catenin stabilizes I?Ba indirectly which results in NF-?B inhibition (Du et al., 2009). 

Vimentin expressing cells have a larger amount of ß-catenin/TCF transcriptional activity 

than vimentin-negative cells, and experiments support vimentin as a target of the ß-

catenin/TCF pathway. The human vimentin promoter is reported to contain a ß-

catenin/TCF binding site 468 bp upstream of the transcriptional start site. In mammary 

human epithelial cell lines, the localization of ß-catenin in the cytoplasm and nucleus is 

associated with vimentin expression and is restricted to invasive or migrating cells (Gilles 

et al., 2003).  
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The Dickkopf Family 

 The Dickkopf family consists of secreted proteins ranging in size from 255 to 350 

amino acids, and there are four main forms found in vertebrates. DKK-1 and DKK-4 are 

pure Wnt/ß-catenin inhibitors. DKK-2 and DKK-3 can activate or inhibit the Wnt/ß-

catenin pathway depending on the cellular context. Members of the DKK family inhibit 

through two mechanisms. The first mechanism involves DKK directly binding to LRP5/6 

and blocking the Wnt-LRP interaction. The second mechanism requires the DKK family 

member forming a complex with LRP5/6 and the DKK receptor Kremen. This complex 

causes endocytosis, and LRP5/6 is removed from the plasma membrane, which inhibits the 

Wnt/ß-catenin pathway (Pendas-Franco, Aguilera, Pereira, Gonzalez-Sancho, & Munoz, 

2008). 

 

Dickkopf-3 (DKK-3) 

DKK-3 is found on chromosome 11p15, and this region is a significant target of 

methylation-mediated genetic imprinting (Yu et al., 2009). High levels of DKK-3 have 

been found in tumor endothelial cells of glioma, high-grade non-Hodgkin’s lymphomas, 

melanoma, and colorectal cancers. Additionally, DKK-3 is a potential marker during tumor 

angiogenesis for endothelial cell activation (Pendas-Franco et al., 2008). DKK-3 is a strong 

regulator of cell invasion, but can be transcriptionally inhibited in a membrane type-1-

MMP (MT1-MMP) dependent manner. This member of the DKK family serves as a tumor 

suppressor by halting cell growth and motility. In urothelial cell carcinoma, DKK-3 assists 
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inhibition of the Wnt signaling pathway, which results in tumor suppression (Saeb-Parsy et 

al., 2008). The absence of DKK-3 can allow activation of the Wnt signaling pathway and 

support tumor growth through disregulation of cell proliferation and differentiation. It is 

possible that down-regulation of DKK-3 in various cancers occurs as a result of promoter 

methylation. This is the common reason for decreased DKK-3 expression in gastric and 

colon cancers, and DKK-3 is often reduced or silenced in gastric and colon cancer cell 

lines (Yu et al., 2009). Methylation of the DKK-3 promoter in primary gastric cancer was 

associated with poor patient outcome. Studies showed that the decreased expression of 

DKK-3 in colon cancer cells is caused by promoter methylation. DNA-methyltransferase 

activity inhibited by 5-aza-2’-deoxycytidine (5-Aza-dC) reversed the methylation, and the 

silenced gene was re-expressed. There was an increase in DKK-3 mRNA expression in the 

silenced cell lines once treated with 5-Aza-dC supporting that methylation was the major 

cause of decreased DKK-3 expression in digestive cancer cells. Constant expression of 

DKK-3 results in decreased colony formation. This inhibition by DKK-3 on cell growth 

has also been shown in lung cancer and osteosarcoma cells (Yu et al., 2009). 

 

Previous Research in Our Lab 

 Previous research in our lab has shown that HN12 cells, derived from a lymph node 

metastasis, express a higher level of vimentin than HN4 cells, derived from a primary 

tumor on the tongue. HN12 cells also have decreased expression of several keratins, 

including K13, K14, and K15. RNA interference was used to inhibit vimentin expression 

in HN12 cells to determine the effects of vimentin overexpression, and this inhibition 
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resulted in decreased proliferation, migration, and invasion. Additionally, these vimentin 

knockdowns showed an up-regulation of K13, K14, and K15. In athymic mice, these cells 

showed smaller and more differentiated tumors. Through quantitative PCR and promoter 

assays, the data showed that the re-expression of these keratins in the vimentin knockdown 

cells was a result of increased transcription (Paccione et al., 2008). 

Additional studies in our lab have demonstrated that DKK3, a Wnt antagonist, is 

inhibited by promoter methylation in HN12 cells. With 5-aza-2’-deoxycytidine, this 

inhibition is relieved, and there are decreased levels of ß-catenin transcriptional targets. 

Other studies have shown that ß-catenin increases vimentin expression through Wnt 

signaling (Gilles et al., 2003). This suggests that by inhibiting DKK3, Wnt signaling could 

increase vimentin expression, and this could cause decreased keratin expression. Currently, 

the mechanism for the repression of keratins in the presence of vimentin overexpression is 

unknown.  
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Figure 3: A. DKK3 promoter is methylated and transcription is inhibited. B. DKK3 is 

expressed which blocks the Wnt signaling pathway.  

 

Hypothesis 

The downregulation of differentiation-specific keratins contributes to tumor 

 progression, mediated directly or indirectly by expression of vimentin. 

 

 

Aims of the Current Study 

• To determine keratin gene expression and biological response in cells that express 

wild-type and PKC phosphorylation site mutants of vimentin 
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o Vimentin will be expressed in vimentin-negative tumor cells and expression 

of K14 will be determined by western blot and qPCR.  

o Proliferation rate will be determined by cell counting.  

o Effects on cell motility and invasion will be determined by wound-closure 

assays. 

• To determine the role of Wnt signaling in vimentin expression during EMT. 

o Determine the effect of NF?B inhibitor on HN12 cell growth. 

o Determine the effect of 5-Aza-C on HN12 cell growth. 

o Proliferation will be determined by cell counting. 

o 5-azaC will be used to relieve the repression on the DKK3 promoter in cells 

where it is repressed by methylation. 

o Vimentin expression will be determined. 
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Methods 
 

Cell Culture 

 HN4 cells were obtained from a primary squamous cell carcinoma of the tongue. 

HN12 cells were obtained from a nodal metastasis in the same patient. HNSCC cells lines 

were cultured in Dulbecco’s Modification of Eagle’s Medium (DMEM) containing 10% 

fetal bovine serum (FBS), penicillin-streptomycin (10µg/ml), and L-glutamine (10µg/ml). 

All cells were maintained at 37°C in 90% air/10% CO2.  

 

Growth Factors and Inhibitors 

HN4 cells expressing the vimentin mutations generated by transfection were 

cultured as above in the presence of G418 (400µg/mL). HN4 shDKK3 cells were cultured 

in DMEM in the presence of puromycin (1µg/ml).  NF-?B inhibitor was prepared in 

DMSO as a stock solution of 2mM. 5-Aza-dC was prepared in PBS as a stock solution of 

6mM.  

 

Plasmids 

 The plasmids pCMV Vim-Wt, pCMV Vim-Ala, and pCMV Vim-Asp encode 

amino acid substitutions at serines 4,6,7,8,9. In pCMV Vim-Ala, these serine residues have 

been mutated to alanine, and pCMV Vim-Asp has these serine residues have been mutated 

to aspartate.  These plasmids have been described previously (Ivaska et al., 2005). 
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Bacterial Transformation 

 The plasmids pCMV Vim-Wt, pCMV Vim-Ala, and pCMV Vim-Asp were 

supplied on filter paper. 100 µL of 1 x TE buffer was added to each plasmid and briefly 

vortexed. These were stored at 4°C overnight. For bacterial transformation, the plasmids 

were centrifuged for 2 min at 15.4 rpm, and the competent E. coli cells were thawed on ice 

for 10 min. 5µl of each sample was combined with 50µl of competent cells (Bioline, 

Randolph, MA).  1µl of the control pUC19 (Bioline, Randolph, MA) was added to the 

competent cells. Samples were placed on ice for 30 min, then heat shocked at 42°C for 45 

s, and immediately placed on ice for 2 min. 250µl of SOC was added to each tube, and 

samples were placed in the shaker at 37°C for 1 h. The entire sample was added to an agar 

plate containing kanamycin (50µg/mL), then spread using glass beads. The plates were 

incubated for 15 min at room temperature, and then incubated overnight at 37°C. 

 

Isolating Colonies and Establishing Liquid Cultures 

Colonies were picked from the plates after incubating overnight. A single colony 

was combined with 3mL of 2 x YT medium in a 15mL tube and shaken overnight at 37°C. 

 

Small Scale DNA Preparations 

 Small scale DNA preparations (Minipreps) were carried out using the Promega 

Wizard Plus SV Miniprep DNA Purification System (Promega, Madison, WI). This 

isolated the plasmid DNA from the transformed E. coli.  Initially, 1.5 mL of the bacterial 
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culture was centrifuged at 10,000 x g for 5 min. The supernatant was poured off, and 250 

µL of Cell Resuspension Solution was added to resuspend the pellet. The solution was 

briefly vortexed. Next, 250 µL of Cell Lysis Solution was added to each sample and mixed 

by inverting the tube 4 times. Samples were incubated at room temperature for 5 min. 10 

µL of Alkaline Protease Solution was added to each sample and mixed by inverting the 

tube 4 times. The samples were incubated at room temperature for another 5 min. 350 µL 

of Neutralization Solution was added and immediately inverted 4 times to mix. The 

samples were centrifuged at 14,000 x g for 10 min. The cleared lysate was transferred to a 

spin column by decanting to avoid transfer of the white precipitate. The supernatant was 

centrifuged for 1 min at 14,000 x g. The spin column was removed from the tube, and the 

flowthrough was discarded from the collection tube. Next, the spin column was placed 

back in the collection tube. 750 µL of Column Wash Solution was added to each spin 

column and centrifuged for 1 min at 14,000 x g. The flowthrough was discarded as before, 

and the procedure was repeated with 250 µL of Column Wash Solution. The samples were 

spun for 2 min at 14,000 x g, then the spin column was transferred to a new, sterile 1.5 mL 

microcentrifuge tube. The plasmid DNA was eluted by adding 100 µL of Nuclease-Free 

Water to the spin column and centrifuged at 14,000 x g for 1 min. The spin column was 

discarded, and the eluted DNA was stored at 4°C. 
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Larger Scale DNA Preparations 

 Larger scale DNA preparations (Midipreps) were carried out using the Promega 

Wizard Plus Midiprep DNA Purification System (Promega, Madison, WI). This isolated 

the plasmid DNA from the transformed E. coli. The cells were centrifuged at 10,000 x g 

for 10 min at 4°C to form a pellet. The pellet was resuspended with 3mL of Cell 

Resuspension Solution. Next, 3mL of Cell Lysis Solution was added to each sample and 

inverted to mix, followed by 3mL of Neutralization Solution and inverted. The samples 

were centrifuged at 14,000 x g for 15 min at 4°C, and the supernatant containing the DNA 

was decanted. The resin was reuspended by adding 10mL of resin to the DNA and mixed 

by swirling. Next, the midicolumn was connected to the vacuum manifold. The resin/DNA 

mixture was transferred to the midicolumn, and the vacuum was applied. The vacuum was 

released once all of the liquid passed through the column. 15mL of Column Wash Solution 

was added to each sample, and the vacuum was applied. This washing step was repeated, 

and once all of the liquid passed through the column, the vacuum was left on for an 

additional 30 s. The midicolumn was removed from the vacuum and placed in a 1.5mL 

microcentrifuge tube, where it was centrifuged for 2 min at 10,000 x g. After being spun 

down, the midicolumn was transferred to a new microcentrifuge tube, and 300µL of 

preheated water was added to each sample. The samples incubated for 1 min and were 

centrifuged at 10,000 x g for 20 s to elute the DNA. The elutate was centrifuged for 5 min 

at 10,000 x g to pellet the resin fine. The supernatant that contained the DNA was 

transferred to a new microcentrifuge tube and stored at -20°C.  
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Nuclear Transfection 

 The pCMV Vim-Wt, pCMV Vim-Ala, and pCMV Vim-Asp plasmids were 

transfected into HN4 cells using the Lonza Nucleofector Kit (Lonza Inc., Gaithersburg, 

MD) using 4 µg of midiprep DNA. HN4 cells were trypsinized, counted, and distributed 

into four tubes (2 x 106 cells per tube). Each tube was centrifuged, and the medium was 

aspirated. The cell pellet was resuspended with 100 µL of Nucleofector Solution and 

transferred to a cuvette. 4µg of plasmid DNA and 0.5µg GFP plasmid were added to each 

cuvette. The cuvette was inserted into the Nucleofector, and the cells were transfected 

using program T-20. Once the transfection was complete, the cuvette was removed from 

the machine, and 500 µL of warm medium with serum was added. This suspension was 

transferred to a 10 mm plate containing 10 mL of complete growth medium. The GFP 

plasmid was added to serve as an internal control for transfection efficiency.  

 

Transient Transfection 

 The pCMV Vim-Wt, pCMV Vim-Ala, pCMV Vim-Asp plasmids and GFP, as a 

control, were transfected into 293T cells to confirm expression. 5 x 104 cells were plated 

per well in a 6-well plate for 24 h in complete growth medium. In a sterile microcentrifuge 

tube, 3 µL/µg of Trans IT-Keratinocyte Transfection Reagent (Mirus, Madison, WI) was 

added dropwise into 200 µL of serum-free medium and mixed by vortexing. This solution 

was incubated for 20 min at room temperature. 2 µg of DNA was added to the diluted 

Trans IT-Keratinocyte Reagent and mixed by gentle pipetting. This solution was again 

incubated for 20 min at room temperature. Next, the medium was removed from the 293T 
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cells and replaced with 2 mL per well of fresh complete growth medium. The Trans IT-

Keratinocyte Reagent/DNA complex mixture was added dropwise to the 293T cells. The 

plate was gently rocked to evenly distribute the mixture in the wells and incubated at 37°C 

for 48 h.  

 

Western Blot 

 Total cellular protein extracts were prepared as follows. Cells were washed with 

cold PBS two times, and then 50µL of vimentin lysis buffer was added to each well. After 

incubating 10 min on ice, the samples were collected and centrifuged for 10 min at 4°C 

and 10.4 rpm. 12.5 µL of 5 x SDS-PAGE buffer was added to each sample. The samples 

were heated for 10 min at 100°C, and then placed on ice for 2 min. The lysates were 

resolved by 10% SDS-polyacrylamide gel (Sambrook & Russell, 2001) electrophoretically 

at 120 V in 1 x SDS-PAGE running buffer. Fractionated proteins were transferred to 

PVDF membranes (Immobilon-P, Millipore Corporation, Bedford, MA) overnight in 1 x 

transfer buffer. The membranes were blocked in 5% non-fat dried milk in 0.05% Tween-

TBS (T-TBS) for 1 h at room temperature, washed three times for 5 min with 0.05% T-

TBS, and incubated overnight with the primary antibody on a shaker at 4°C. Next, the 

membranes were washed three times with TTBS for 5 mins. After washing, the membranes 

were incubated with HRP-conjugated secondary antibodies at room temperature for 1 h. 

The membranes were washed again with TTBS three times for 5 min. Finally, the 

membranes were incubated at room temperature for 2 min with Western Lightning 
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Chemiluminescence Reagent Plus (Perkin Elmer Life Sciences Inc., Boston, MA) and 

imaged using Kodak film.  

Primary Antibody Supplier Dilution 
Vimentin Sigma, St. Louis, MO 1:5000 
Keratin 14 (hybridoma 
supernatent) 

Gift of Dr. A. Waseem, 
University of London 

1:1000 

Actin Santa Cruz Biotechnology, 
Santa Cruz, CA 

1:1000 

DKK3 Abcam, Cambridge, MA 1:500 
Table 2: Primary Antibodies for Western Blotting 

 

Immunofluorescence 

 Cells (5 x 103) were plated on coverslips in 12-well plates and allowed to grow 

until 75% confluent. Cells were washed with PBS, and then fixed in cold methanol for 20 

min. The cells were permeabilized in PBST (PBS and Triton X) for 5 min, and then 

blocked in 5% BSA in PBST for 1 h at room temperature. Cells were incubated with the 

primary antibody diluted in blocking buffer overnight at 4°C.  The cells were washed six 

times for 5 min with PBST and incubated with a FITC-conjugated secondary antibody at a 

1:500 dilution in blocking buffer and 1µg/mL DAPI for 1 h at room temperature. The 

coverslips were mounted on a microscope slide with Vectashield and analyzed with a Zeiss 

Axiovert 200 inverted fluorescence microscope.  

Primary Antibody Supplier Dilution 
Vimentin  Sigma, St. Louis, MO 1:500 
Keratin 14 (hybridoma 
supernatent) 

Gift of Dr. A. Waseem, 
University of London 

1:250 

? -catenin Santa Cruz Biotechnology, 
Santa Cruz, CA 

1:100-1:200 

E-cadherin Sigma, St. Louis, MO 1:100-1:200 
Table 3: Primary Antibodies for Immunofluorescence 
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MTT Assay 

 Cells were plated at 5x103 cells per well in a 12-well plate in triplicate and allowed 

to grow to 80% confluence. 100 µL of MTT reagent (3-(4,5-Dimethylthiazolyl-2)-2,5-

Diphenyl Tetrazolium Bromide in PBS) (MP Biomedicals Inc., Solon, OH) was added to 

each well, and the cells incubated for 4 h at 37°C in 90% air/10% CO2. The medium and 

reagent were removed from each well, and the formazan crystals were solubilized in 1 mL 

of MTT solubilization buffer (0.01M HCl with 10% SDS) per well and incubated 

overnight. Absorbance was measured spectrophotometrically at 570 nm. The MTT 

solubilization buffer was used as the blank measurement.  

 

Cell Proliferation Assay 

 Cells were plated at 5 x 103 cell per well in 6-well plates. They were cultured for 

three days before counting and counted for five consecutive days using a hemacytometer. 

Each cell line was plated in triplicate, and each well was counted twice. For counting, the 

cells were trypsinized with 250 µL trypsin and incubated until all of the cells were 

detached. The trypsin-cell suspension was neutralized with 1 mL of medium and 

centrifuged at 1.0 rpm for 5 min. Cells were resuspended in 0.1 mL, 0.5 mL, or 1 mL of 

medium and counted. 
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RNA Extraction 

 Cells were plated in 6-well plates and allowed to grow until they were 75% 

confluent. The medium was removed, and 1 mL of Trizol reagent (Life Technologies, 

Carlsbad, CA) was added to each well. The plate was incubated for 5 min on a shaker. 

After incubating, the entire contents of the well were transferred to a microcentrifuge tube 

and incubated for 2 min, then 200 µL of chloroform was added to each tube. The tubes 

were shaken vigorously by hand, and then centrifuged at 4°C for 15 min at 12,000 x g. The 

clear aqueous phase was carefully pipetted to a new microcentrifuge tube. 0.5 mL of 

isopropyl alcohol was added to each tube and incubated at room temperature for 10 min. 

The samples were centrifuged at 4°C for 15 min at 12,000 x g. The supernatant was 

removed, and the pellets were washed with 1 mL of 75% ethanol. Next, the samples were 

centrifuged at 4°C for 5 min at 12,000 x g. The supernatant was removed, and the pellets 

air-dried for 30 min. The pellet was then resuspended in 20 µL of RNase-free water. The 

samples were heated at 55°C for 15 min, chilled on ice for 2 min, and then briefly 

centrifuged. The RNA concentration was measured using a Nanodrop spectrophotometer. 

The RNA, at a concentration 1µg/µL, was electrophoresed in a 1% agarose gel to 

determine the quality of the sample.  

 

cDNA Synthesis 

cDNA was synthesized from extracted RNA using MultiScribe Reverse 

Transcriptase (Applied Biosystems, Foster City, CA). In a labeled microcentrifuge tube, 2 

µg RNA, 1 µL of 100µM oligo(dT), 1 µL of 10mM dNTP were added, and then milliQ 
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water was added until the total volume was 13 µL. The samples were incubated at 65°C for 

5 min, then placed on ice for 2 min. After briefly centrifuging the samples, 4 µL of 5 x 

First Strand Buffer and 2 µL 0.1 M DTT were added to each microcentrifuge tube. The 

samples were briefly centrifuged again, and 1 µL of MultiScribe Reverse Transcriptase 

was added to each tube and mixed by pipetting. The samples were incubated in a water 

bath at 42°C for 50 min, and the reaction was stopped by heating at 70°C for 15 min. The 

samples were chilled on ice for 2 min, briefly centrifuged, and then stored at -20°C.  

 

Polymerase Chain Reaction (PCR) 

 Each reaction consisted of 5 µL 10x High Fidelity PCR Buffer, 1 µL 10 mM dNTP, 

2 µL 50 mM MgSO4, 1µL primer, 1 µL template DNA, 0.2 µL Platinum Taq High Fidelity 

DNA polymerase, and 40 µL nuclease-free water. A master mix was made which 

contained the appropriate amounts of the above reagents for the number of reactions being 

run with the exception of the template DNA. 49 µL of the master mix was placed into each 

microcentrifuge tube, and 1 µL of template DNA was added to each tube individually. The 

samples were briefly centrifuged and placed in the GeneAmp PCR System 9700 thermal 

cycler. The cycle settings were denature at 94°C for 30 s, anneal at 55°C for 30 s, and 

extend at 68°C for 1 min. A total of 40 cycles were run, and the samples cooled at 4°C 

after cycling.  
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Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) 

 All qRT-PCR reactions were performed using an ABI 7500 Fast System (Applied 

Biosystems, Rockville, MD). Each reaction consisted of 5 µL SYBR-green mix, 1 µL 

primer, 1 µL cDNA, and 3 µL nuclease-free water in a total volume of 10 µL. A master 

mix lacking template was made which contained the appropriate amount of the above 

reagents for the number of reactions being run. Each sample was run in triplicate. 9 µL of 

the master mix was placed into each well, and 1 µL of cDNA template was pipetted 

individually into each well. The 96-well plate was covered with an adhesive cover slip, and 

then briefly centrifuged. The 7500 Fast Real-Time PCR System was used in the Standard 

7500 mode using a SYBR-green protocol.  

 

Immunoprecipitation 

 Cells were counted and plated in normal growth medium. After 24 h, cells were 

washed with PBS and placed in serum-free medium. The conditioned medium was 

collected from the cells and transferred to a microcentrifuge tube. 1µg DKK3 antibody was 

added to each tube per 1mL of conditioned medium. The microcentrifuge tubes were 

rotated end-over-end at 4°C for 30 min. Next, 30µL of a 50% slurry of Protein A-

Sepharose was added to each sample and rotated end-over-end for 1h at 4°C. The samples 

were centrifuged at 10,000 rpm for 5 min at 4°C. The supernatant was carefully decanted 

from each sample. 1mL of lysis buffer was added to each tube, flicked to wash, and 

centrifuged for 1 min. The process of removing the supernatant, washing, and centrifuging 

was repeated twice. After the third wash, the samples were centrifuged again without any 
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lysis buffer, and the remaining liquid was removed by careful pipetting. The Sepharose 

complexes were resuspended in 1 x SDS/PAGE buffer, heated at 95°C for 10 min, and run 

on a 10% SDS-polyacrylamide gel.  

 

Cell Migration Assay 

 Cell migration was assessed using wound-healing (scratch) assays. Cells were 

counted and plated in triplicate in 12 well plates. The cells were incubated at 37°C until 

100% confluent. Once totally confluent, a sterile pipette tip was used to scratch the surface 

of the well, which removed a layer of cells in the scratched line. Each well was washed 

with PBS and replaced with growth medium. After making the scratch, the width was 

determined by measuring three specific points under a 5 x objective using a light 

microscope and AxioVision software (Carl Zeiss Microimaging, Thornwood, NY). Cells 

were incubated at 37°C for 8 h or 24 h, at which time, the width was measured again at the 

same points used at 0 h.  

 

Statistical Analysis 

Data were analyzed using Microsoft Excel and Graphpad QuickCalcs software 

(http://www.graphpad.com/quickcalcs/).  Paired T-tests were performed, and p-values were 

compared to an a-value of 0.05 to be considered statistically significant. Error bars on the 

figures represent the standard error of the mean. 
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Results 
 

Overexpression of Vimentin in Vimentin-negative HN4 Cells 
 
 Previous research in our laboratory has shown that HN4 cells express low levels of 

vimentin, while HN12 cells express high levels of vimentin. Using shRNA to inhibit 

vimentin expression in HN12 cells, there was decreased proliferation and motility, as well 

as re-expression of keratins (Paccione et al., 2008). The cause of keratin re-expression is 

unknown, but it is possible that vimentin plays a role in this regulation directly or 

indirectly. Furthermore, studies have shown that Wnt signaling can upregulate vimentin 

expression through ß-catenin (Goto et al., 2003). Wnt-5a has been shown to increase cell 

motility and vimentin expression in melanoma cells. These effects are partially dependent 

on PKC activity (Dissanayake et al., 2007). Additionally, PKCe phosphorylates vimentin 

and has been shown to be required for vimentin- induced cell migration. Cells with 

unphosphorylatable versions of vimentin do not show increased motility (Ivaska et al., 

2005). To explore the possibility of vimentin regulation of keratin, we expressed plasmids 

encoding wild-type vimentin, a PKCe-phosphomimetic (aspartate mutant) version of 

vimentin, or an unphosphorylatable (alanine mutant) version of vimentin in vimentin-

negative HN4 cells. Transfection was performed using a Nucleofector device, and stable 

cell pools were isolated in media containing 400µg/mL G418. Vimentin overexpression 

was determined by western blot analysis. As shown in Fig. 4, vimentin was overexpressed 
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in cells containing the wild-type vimentin plasmid compared to parental HN4 cells. This 

overexpression was highest in clone 3, which was chosen for further experiments. Fig. 5 

shows the overexpression of vimentin with the PKCe-phosphomimetic version of 

vimentin. The strongest overexpression was shown in clone 4, and this clone was used for 

subsequent studies. Overexpression of the unphosphorylatable version of vimentin is 

illustrated in Fig. 6. Several clones showed an increased level of vimentin compared to 

parental HN4 cells, but clone 5 was used for further experiments. Once these clones were 

identified, vimentin and keratin expression were confirmed by western blot analysis. As 

shown in Fig. 7, vimentin was readily detected in the HN12 cell lysates, not detectable in 

the HN4 cell lysates, and detectable at lower levels in cell lysates from the HN4 vimentin 

mutants. Additionally, keratin 14 expression was not detected in the HN12 cell lysates. 

However, keratin 14 was detectable in the HN4 control and vimentin mutant cell lysates. 

Keratin 14 expression was also confirmed by qRT-PCR, using keratin 14-specific primers. 

Fig. 8 shows that keratin 14 is expressed in the HN4 vimentin mutants but at a decreased 

level compared to HN4 control cells. Furthermore, immunofluorescence confirmed 

vimentin and keratin 14 expression in the HN4 vimentin mutant cells (Figs. 9 and 10, 

respectively). Vimentin staining was absent in HN4 control cells, and keratin 14 staining 

was absent in HN12 cells. These data confirm that vimentin is overexpressed in HN4 

vimentin mutant cells. It also confirms that there is a difference in the expression of keratin 

14 in the HN4 vimentin mutant cells compared to vector-transfected HN4 cells.  
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Figure 4: Vimentin is expressed in HN4 cells transfected with the plasmid encoding 

wild-type vimentin. Total cell protein extracts were prepared as described in ‘Methods’ 

and analyzed for vimentin expression by western blotting (top panel). Levels of actin were 

determined as a loading control (lower panel).  
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Figure 5: Vimentin is expressed in HN4 cells transfected with the plasmid encoding a 

PKCe-phosphomimetic (aspartate mutant) version of vimentin. Total cell protein 

extracts were prepared as described in ‘Methods’ and analyzed for vimentin expression by 

western blotting (top panel). Levels of actin were determined as a loading control (lower 

panel).   
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Figure 6: Vimentin is expressed in HN4 cells transfected with the plasmid encoding 

an unphosphorylatable (alanine mutant) version of vimentin. Total cell protein extracts 

were prepared as described in ‘Methods’ and analyzed for vimentin expression by western 

blotting (top panel). Levels of actin were determined as a loading control (lower panel).  
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Figure 7: Vimentin and keratin 14 expression in HN4 vimentin-transfected cells. Total 

cell protein extracts were prepared as described in ‘Methods’ and analyzed for vimentin 

expression (top panel) and keratin 14 expression by western blotting (middle panel). 

Levels of actin were determined as a loading control (lower panel).  
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Figure 8: Keratin 14 expression is decreased in HN4 vimentin-transfected cell lines. 

Total RNA was extracted and reverse-transcribed to create cDNA, and then qRT-PCR was 

performed as described in ‘Methods.’ The relative expression ratio represents the 

expression of keratin 14 to the internal standard, actin.  
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Figure 9: Confirmation of vimentin expression in HN4 vimentin mutant cells using 

immunofluorescence. Cells were cultured on glass coverslips and fixed as described in 

‘Methods.’ Cells were incubated with anti-vimentin antibody overnight then incubated 

with a FITC-conjugated anti-mouse antibody for 1h and counterstained with DAPI.  
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Figure 10: Confirmation of keratin 14 expression in HN4 vimentin mutant cells using 

immunofluorescence. Cells were cultured on glass coverslips and fixed as described in 

‘Methods.’ Cells were incubated with anti-keratin 14 antibody overnight then incubated 

with a FITC-conjugated anti-mouse antibody for 1h and counterstained with DAPI.  
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Confirmation of Expression of Vimentin Mutants in 293T Cells 
 
 The pCMV Vim-Wt, Vim-Asp, and Vim-Ala plasmids were transiently transfected 

into 293T cells to confirm vimentin expression. qRT-PCR was performed on the cDNA 

template using vimentin-specific primers. Fig. 11 shows vimentin expression was higher in 

all three cell lines transfected with the plasmid when compared to the GFP control. The 

vimentin expression in the 293T cells transfected with the PKCe-phosphomimetic version 

of vimentin (lower panel) was much greater than the wild-type and unphosphorylatable 

versions of vimentin (upper panel). These data confirm that expression of these plasmids 

increased vimentin expression.  
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Figure 11: Vimentin expression in transiently transfected 293T cells confirmed by 

qRT-PCR. The expression ratio is a result of the vimentin expression levels compared to 

an internal standard, ?-tubulin. All three vimentin mutants displayed greater vimentin 

expression than the GFP control. However, vimentin expression in the PKCe-

phosphomimetic version of vimentin (lower panel) was higher than the vimentin 

expression in the wild-type and unphosphorylatable version of vimentin (upper panel). 
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Effect of Vimentin Overexpression in HN4 Cells on Cell Growth 

 The expression of vimentin in HN12 cells has been suggested to cause increased 

proliferation, migration, and invasion when compared to HN4 cells or HN12 cells with 

RNAi to inhibit vimentin expression (Paccione et al., 2008). To determine the effect of 

vimentin overexpression in vimentin-negative HN4 cells, we performed an MTT assay on 

these cells to determine cell growth and viability. Cells were counted, plated in triplicate, 

and allowed to grow for 7 days. After 7 days, the MTT assay was performed, and the 

absorbance was measured by spectrophotometer. As shown in Fig. 12, the cells with the 

wild-type or PKCe-phosphomimetic versions of vimentin grew much faster than the cells 

with the unphosphorylatable version of vimentin and HN4 vector cells. Additionally, the 

growth of the cells with the unphosphorylatable version of vimentin was slightly slower 

than the HN4 vector cells. Further study of the effect on growth was carried out using a 

cell proliferation assay. Cells were plated in triplicate and counted over 10 days. Fig. 13 

shows that cells expressing the wild-type or PKCe-phosphomimetic versions of vimentin 

have significantly increased proliferation compared to HN4 vector control cells. Also, 

proliferation of cells containing the unphosphorylatable version of vimentin is significantly 

decreased in comparison to HN4 vector control cells. These results suggest that vimentin 

phosphorylation may influence how vimentin regulates cell growth.  
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Figure 12: Expression of vimentin mutants affects cell growth. Cells (5 x 103 per well) 

were plated in triplicate in 12-well plates and incubated as described in ‘Methods.’ After 7 

days, the MTT assay was performed.  
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Figure 13: Expression of vimentin mutants affects cell proliferation. Cells (5 x 103 per 

well) were plated in triplicate in 6-well plates and incubated as described in ‘Methods.’ 

Cell counting began 4 days after cells were plated, and they were counted every other day 

until day 10.  
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Effect of Vimentin Overexpression in HN4 Cells on Cell Motility 
 
 After determining the effect of vimentin overexpression on proliferation of HN4 

cells, we were interested to find out whether this overexpression also affected cell motility. 

To determine the effect of vimentin overexpression on cell motility, we performed a 

wound-healing (scratch) assay. Cells were counted, plated in triplicate, and allowed to 

grow until 100% confluent. The wells were scratched with a sterile pipette tip, and the 

width of the scratch was measured using a light microscope. Once the scratch was 

measured at 0h, the cells were re-placed in the incubator, and the scratch was measured 

again 8h or 24h later. As shown in Fig. 14, the cells with wild-type or PKCe-

phosphomimetic versions of vimentin migrated at a faster rate than the HN4 vector cells. 

Additionally, the cells with the unphosphorylatable version of vimentin migrated at a rate 

similar to the HN4 vector cells.  
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Figure 14: Expression of Vimentin Mutants Affects Cell Motility. Cells were plated in 

triplicate in 12-well plates and incubated under standard conditions. Wells were scratched, 

and the width was measured as described in ‘Methods.’ 
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Effect of Vimentin Overexpression in HN4 Cells on the Presence of ß-catenin 

 Research shows that ß-catenin can stimulate vimentin expression (Gilles et al., 

2003). Since we have overexpressed vimentin in these HN4 cells, we were interested in 

whether ß-catenin showed altered expression. Immunofluorescence confirmed the 

expression of ß-catenin in the HN4 vimentin mutants, as seen in Fig. 15. All of the cell 

lines express ß-catenin, and there appears to be little difference in the staining between the 

various mutants either in terms of intensity or localization.  
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Figure 15: ß-catenin expression in HN4 vimentin-transfected cells. Cells were cultured 

on glass coverslips and fixed as described in ‘Methods.’ Cells were incubated with anti-ß-

catenin antibody overnight, and then incubated with a FITC-conjugated anti-goat antibody 

for 1h and counterstained with DAPI.  
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Effect of Vimentin Overexpression in HN4 Cells on the Presence of E-cadherin 

 E-cadherin is a major molecule in the adherens junction, and it plays are large role 

in EMT due to its interaction with ß-catenin (Voulgari & Pintzas, 2009). In tumorigenesis, 

E-cadherin is commonly inactivated or silenced by various mechanisms. We used 

immunofluorescence to determine whether the presence of vimentin in HN4 cells affects or 

alters the expression of E-cadherin. Our results show distribution of E-cadherin is altered 

in cells expressing wild-type or mutant forms of vimentin. As seen in Fig. 16, cells 

encoding the wild-type version of vimentin show E-cadherin staining resembling the 

HN4V control cells. However, there are distinct changes in the other two vimentin 

expressing mutants. In cells encoding the PKCe-phosphomimetic version of vimentin, the 

E-cadherin is present in packets throughout the cytoplasm. Cells encoding the 

unphosphorylatable version of vimentin show a variety of different E-cadherin patterns, 

and the entire sample consisted of the variations shown in Fig. 16.  Clearly, the expression 

of E-cadherin is altered in cells encoding the unphosphorylatable version of vimentin.  
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Figure 16: E-cadherin expression in HN4 vimentin-transfected cells. Cells were 

cultured on glass coverslips and fixed as described in ‘Methods.’ Cells were incubated 

with anti-E-cadherin antibody overnight, and then incubated with a FITC-conjugated anti-

rat antibody for 1h and counterstained with DAPI.  
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NF-?B Inhibitor Effects Vimentin-Positive HN12 Cells 

 Previous research in our lab showed an increase in K13, K14, and K15 expression 

in vimentin knock-down cells. Additionally, studies have shown that NF-?B transcription 

factors may be involved in keratin repression (Blumenberg, 2006). Also, NF-?B is 

commonly involved in tumor progression. To examine the effect of NF-?B on vimentin 

and keratin expression, we used an NF-?B inhibitor on vimentin-positive HN12 cells. 

Initially, we performed an MTT assay to determine the appropriate concentration of NF-?B 

inhibitor to use without being toxic to the cells. Cells were counted, plated in triplicate, and 

allowed to grow for 7 days. After 7 days, the MTT assay was performed, and the 

absorbance was measured by spectrophotometer. Fig. 17 shows the results of different NF-

?B inhibitor concentrations on HN12 cells. The presence of the NF-?B inhibitor resulted in 

decreased HN12 cell growth. This decrease in cell growth is greater with an increasing 

concentration of the NF-?B inhibitor. In initial studies, we used 200nM. First, we 

performed a qRT-PCR on the cDNA template using vimentin-specific primers. Fig. 18 

shows vimentin expression was decreased in the vimentin-positive HN12 cells after being 

treated with 200nM NF-?B inhibitor. After we observed a decrease in vimentin expression, 

we determined the effect of the NF-?B inhibitor on cell proliferation. Cells were plated in 

triplicate and counted over 8 days. Fig. 19 shows that the presence of 200nM NF-?B 

inhibitor also resulted in decreased proliferation of vimentin-positive HN12 cells.  
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Figure 17: Dose-response of HN12 cells with NF-?B inhibitor. Cells (5 x 103 per well) 

were plated in triplicate in 12-well plates and incubated as described in ‘Methods.’ After 7 

days, the MTT assay was performed.   
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Figure 18: NF-?B inhibition leads to reduced vimentin expression in HN12 cells. Total 

RNA was extracted and reverse-transcribed to create cDNA, and then qRT-PCR was 

performed as described in ‘Methods.’ The relative expression ratio represents expression of 

vimentin to the internal standard actin. 
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Figure 19: NF-?B inhibition leads to reduced proliferation of HN12 cells. Cells (5 x 

103 per well) were plated in triplicate in 6-well plates and incubated as described in 

‘Methods.’ Cell counting began 4 days after cells were plated, and they were counted 

everyday until day 8.  
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5-Aza-dC Affects Vimentin-Positive HN12 Cells 

 Previous research in our lab suggested that the promoter of DKK3, a Wnt 

antagonist, is methylated in advanced HNSCC cells. This methylation represses DKK3 

expression in these cells. HN12 cells grown in the presence of 5-Aza-dC removes this 

repression and transcriptional targets of ß-catenin are decreased. ß-catenin has also been 

shown to enhance vimentin expression. Therefore, it is possible that repressing DKK3 

could enhance Wnt signaling and lead to increased vimentin expression, which might 

additionally cause decreased keratin expression. To explore the effect of 5-Aza-dC on cell 

growth in vimentin-positive HN12, we performed an MTT assay. Cells were counted, 

plated in triplicate, and allowed to grow for 7 days. After 7 days, the MTT assay was 

performed, and the absorbance was measured by a spectrophotometer the next day. Fig. 20 

shows the result of the MTT assay. HN12 cells grown in the presence of 5-Aza-dC resulted 

in decreased cell growth. After seeing a decrease in cell growth by the MTT assay, we 

performed a cell proliferation assay on HN12 cells grown in the presence of 5-Aza-dC. In 

Fig. 21, the effect of 5-Aza-dC on HN12 cell proliferation is shown. When grown in the 

presence of 5-Aza-dC, HN12 cells have decreased proliferation.  
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Figure 20: 5-Aza-dC leads to reduced cell growth in HN12 cells. Cells (5 x 103 per 

well) were plated in triplicate in 12-well plates and incubated as described in ‘Methods.’ 

After 7 days, the MTT assay was performed. 
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Figure 21: 5-Aza-dC leads to reduced proliferation of HN12 cells. Cells (5 x 103 per 

well) were plated in triplicate in 6-well plates and incubated as described in ‘Methods.’ 

Cell counting began 4 days after cells were plated, and they were counted everyday until 

day 8. 
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Combined Effect of NF-?B Inhibitor and 5-Aza-dC on Vimentin-Positive HN12 Cells 

 In addition to NF-?B repressing keratin expression and methylation of DKK3 

allowing Wnt signaling in HN12 cells, there is also a possibility that Wnt signaling could 

activate NF-?B or that these pathways might act in concert. After observing the individual 

effects of the NF-?B inhibitor and 5-Aza-dC on HN12 cells, we grew the cells under both 

conditions to see if there is a combined effect. For these experiments, we used 2µM NF-?B 

inhibitor. As shown in Fig. 17, this concentration provided a greater decrease in cell 

growth than 200 nM, but did not appear toxic to the cells. Initially, we performed a MTT 

assay, and Fig. 22 shows the effect of the NF-?B inhibitor, 5-Aza-dC, and the combined 

effect of both on HN12 cells. The growth of HN12 cells was decreased in all three 

conditions. However, the greatest decrease in growth was seen with the NF-?B inhibitor 

and the combination of the NF-?B inhibitor and 5-Aza-dC. After seeing a significant 

decrease at day 7, we decided to perform an MTT assay on days 5, 6, and 7 to determine if 

it was a gradual change. Fig. 23 shows the difference between the results on each of these 

three days. The greatest increase in growth appears between days 6 and 7. To explore this 

further, we performed a cell proliferation assay. Cells were plated in triplicate and counted 

over 8 days. Fig. 24 shows the results of the cell proliferation assay. Clearly, HN12 cells 

proliferate at a slower rate when grown in the presence of the NF-?B inhibitor or 5-Aza-

dC. A greater decrease was seen again with either 2µM NF-?B inhibitor or the 

combination of the NF-?B inhibitor and 5-Aza-dC. Additionally, we decided to investigate 

vimentin expression in HN12 cells treated with these conditions using western blotting and 

immunofluorescence. Fig. 25 shows that vimentin was expressed in the cells treated with 
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the NF-?B inhibitor, 5-Aza-dC, or a combination of the two. However, vimentin 

expression was decreased in all of the treated cell lines, and the largest decrease was seen 

in the cells treated with 5-Aza-dC. The results of our immunostaining experiment are 

shown in Fig. 26. Again, vimentin expression is present in the cell lines treated with NF-

?B inhibitor or 5-Aza-dC, but the expression is much weaker in the treated cells than the 

control HN12 cells.  
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Figure 22: NF-?B inhibitor and 5-Aza-dC reduce HN12 cell growth. Cells (5 x 103 per 

well) were plated in triplicate in 12-well plates and incubated as described in ‘Methods.’ 

After 7 days, the MTT assay was performed.  
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Figure 23: Growth change as a result of NF-?B inhibitor or 5-Aza-dC is gradual. 

Cells (5 x 103 per well) were plated in triplicate in 12-well plates and incubated as 

described in ‘Methods.’ Three 12-well plates were plated for each set of conditions. On 

day 5, 6, and 7, the MTT assay was performed.  
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Figure 24: NF-?B inhibitor and 5-Aza-dC reduce HN12 cell proliferation. Cells (5 x 

103 per well) were plated in triplicate in 6-well plates and incubated as described in 

‘Methods.’ Cell counting began 4 days after cells were plated, and they were counted daily 

until day 8.  
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Figure 25: Vimentin expression is decreased in HN12 cells treated with NF-?B 

inhibitor or 5-Aza-dC. Total protein extracts were prepared as described in ‘Methods’ 

and analyzed for vimentin expression (top panel). Levels of actin were determined as a 

loading control (lower panel). 
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Figure 26: Vimentin expression in HN12 cells treated with NF-?B inhibitor or 5-Aza-

dC using immunofluorescence. Cells were cultured on glass coverslips and fixed as 

described in ‘Methods.’ Cells were incubated with anti-vimentin antibody overnight, and 

then incubated with a FITC-conjugated anti-mouse antibody for 1h and counterstained 

with DAPI. 
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Effects of DKK3 shRNA Expression in Vimentin-negative HN4 Cells 

 Research in our laboratory suggests that DKK3, a Wnt antagonist, is repressed by 

methylation in HN12 cells. To confirm the difference of DKK3 expression in vimentin-

negative HN4 cells and vimentin-positive HN12 cells, a qRT-PCR analysis was performed 

using DKK3-specific primers. Fig. 27 confirms there is a difference in DKK3 expression 

between these two cell lines, and the amount of DKK3 expressed in HN12 cells is 

significantly decreased compared to HN4 cells. HN4 cells that express DKK3 shRNA were 

previously generated in our laboratory, and we performed a qRT-PCR with DKK3-specific 

primers to confirm the quantity of the DKK3 inhibition. Based on the results in Fig. 28, the 

shDKK3 clones 1 and 4 were used for further study. After confirming the inhibition of 

DKK3 in these clones by qPCR, a western blot analysis was performed.  As seen in Fig. 

29, cell lysates from the HN4 cells had the largest amount of DKK3 expression. A 

decrease in DKK3 expression was seen in the HN12 cell lysates, but a much clearer 

decrease was shown by the HN4 shDKK3 #1 cell lysates. This western blot also illustrated 

that HN4 shDKK3 #4 was not a substantial DKK3 knockdown. We also detected vimentin 

expression in the HN4 shDKK3 #1 cell lysates. Vimentin expression was seen in the HN12 

cells as well. Additionally, conditioned media from HN4 and HN4 shDKK3 cells were 

immunoprecipitated with a DKK3 antibody to determine DKK3 secretion from these cells. 

HN4, HN4 shDKK3 #1, and HN4 shDKK3 #4 cells were counted and plated in normal 

growth medium. After 24 h, cells were washed with PBS and placed in serum-free 

medium. The conditioned medium was collected from the cells, and immunoprecipitation 

was performed using a DKK3 antibody. Fig. 30 shows the expression of DKK3 from these 
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three immunoprecipitation reactions. All three samples from the immunoprecipitation 

reactions showed expression of DKK3, although the expression in the HN4 shDKK3 cells 

was slightly decreased compared to the amount of DKK3 secreted by the HN4 control 

cells. 
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Figure 27: Expression of DKK3 in HN12 and HN4 cells. Total RNA was extracted and 

reverse-transcribed to create cDNA, and then qRT-PCR was performed as described in 

‘Methods.’ The relative expression ratio represents the expression of DKK3 to the internal 

standard, actin. 
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Figure 28: shRNA-mediated inhibition of DKK3.  Total RNA was extracted and 

reverse-transcribed to create cDNA, and then qRT-PCR was performed as described in 

‘Methods.’ The relative expression ratio represents the expression of DKK3 to the internal 

standard, actin.  
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Figure 29: DKK3 and vimentin expression in HN4 cells expressing DKK3 shRNA. 

Total cell protein extracts were prepared as described in ‘Methods’ and analyzed for 

DKK3 expression (top panel) or vimentin (middle panel). Levels of actin were determined 

as a loading control (lower panel).  



www.manaraa.com

79 

 

 
Figure 30: DKK3 is secreted by HNSCC cells. Cells were counted and plated in normal 

growth medium. After 24 h, cells were washed with PBS and placed in serum-free 

medium. The conditioned medium was collected from the cells, and the 

immunoprecipitation reaction was performed as described in ‘Methods’ using the DKK3 

antibody.  
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Discussion 
 

Aims of Current Study 

 The aims of this study were to determine keratin gene expression and biological 

response in cells that express wild-type and PKC phosphorylation site mutants of vimentin 

and to determine the role of Wnt signaling in vimentin expression during EMT. 

 

Overexpression of Vimentin in Vimentin-negative HN4 Cells  

 EMT is the process that is responsible for allowing epithelial tumors to metastasize 

to other tissues (Stadler et al., 2008). Undergoing EMT usually results in decreased cell 

anchorage and increased cell motility. Vimentin expression is associated with EMT and 

increased metastatic potential (Ghosh et al., 2002). EMT is also characterized by a 

decrease in epithelial cell markers, such as E-cadherin (Lester et al., 2007). Previous 

research in our lab showed that when vimentin expression is inhibited in HN12 cells by 

shRNA, the cells exhibited decreased proliferation and motility, as well as re-expression of 

keratins (Paccione et al., 2008). 

To determine the effect on keratin gene expression in response to vimentin 

overexpression, plasmids encoding wild-type vimentin, a PKCe-phosphomimetic 

(aspartate mutant) version of vimentin, or an unphosphorylatable (alanine mutant) version 

of vimentin were expressed in vimentin-negative HN4 cells. Vimentin overexpression was 
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confirmed by western blot analysis, and the clone with the strongest overexpression was 

used for further experiments. The presence of wild-type vimentin has been shown to 

enhance cell motility in a PKCe-dependent manner. When these sites are substituted with 

alanine, vimentin can no longer induce cell motility, while aspartate substitutions allow 

motility in PKCe null cells. These PKC-mediated phosphorylation sites on vimentin are 

very important in integrin trafficking through the cell (Ivaska et al., 2005), and the ability 

of vimentin to assemble into polymers is largely regulated by phosphorylation (Inagaki, 

Inagaki, Takahashi, & Takai, 1997). Additionally, the expression of vimentin is associated 

with increased migration of cells involved in EMT (Kang & Massague, 2004). We 

examined the level of keratin 14 in cells that co-express vimentin. Our western blot 

analysis shows that the overexpression of vimentin in HN4 cells has an effect on the 

expression of keratin 14 protein. The amount of keratin 14 appears to be decreased in the 

cells expressing the wild-type version of vimentin or the PKCe-phosphomimetic version of 

vimentin when compared to the control HN4V cells. The cells with the unphosphorylatable 

version of vimentin have an increased level of keratin 14 protein compared to the control 

HN4V cells. These results suggest that the overexpression of vimentin is having an effect 

on the expression of keratin 14 in HN4 cells. Additionally, the phosphorylation status of 

vimentin likely plays a role in this differential keratin 14 expression. However, the results 

of our qRT-PCR experiments suggest that the expression of the unphosphorylatable 

version of vimentin in HN4 cells leads to a substantial reduction in the level of keratin 14 

mRNA. There is less transcription of keratin 14 in the cells encoding the 

unphosphorylatable version of vimentin, but the protein may be more stable leading to 
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enhanced levels of protein seen in the western blot and immunofluorescence experiments. 

This may be a consequence of the differential vimentin phosphorylation and suggests that 

the unphosphorylatable version of vimentin may stabilize the protein directly or indirectly. 

As mentioned above, Ivaska and co-workers found that PKCe-mediated phosphorylation of 

vimentin controls endocytic vesicle association with intermediate filaments, which is 

responsible for recycling endocytosed integrins to the plasma membrane, and the 

substitution of alanine at the PKC-regulated N-terminal phosphorylation sites removes the 

capability of vimentin to initiate cell motility in PKCe-expressing cells (Ivaska et al., 

2005). Once an effect was seen on keratin 14 expression by western blotting and qRT-

PCR, we decided to look at the presence of vimentin and keratin 14 by 

immunofluorescence. Vimentin staining was not present in the control HN4 vector 

transfected cells, but the staining was clear in the cells encoding the wild-type, PKCe-

phosphomimetic, or unphosphorylatable versions of vimentin. Vimentin staining in HN12 

shows distinct filaments. However, the staining seen in the mutants differs from this 

filamentous appearance. The cells encoding the unphosphorylatable version of vimentin 

has the most distinct staining. Instead of a filament structure, these cells show vimentin in 

small packets. The cells encoding the PKCe-phosphomimetic version of vimentin has 

staining that closely resembles HN12. However, the vimentin appears as “squiggles” 

instead of long filaments. These “squiggles” are thought to be precursors to the longer 

intermediate filaments that are seen in fibroblasts. The changes in filament structure seen 

by Ghosh et al. were the result of changes in integrin expression that affected ERK 

activation  (Ghosh et al., 2002). This suggests that mutations at the PKCe-phosphorylation 
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sites cause defects in intermediate filament assembly. The differences in the appearance of 

vimentin may be a result of the phosphorylation site substitutions. We also found that all 

three mutant cell lines clearly expressed keratin 14. The keratin 14 expression in the cells 

encoding wild-type vimentin or the PKCe-phosphomimetic version of vimentin resembled 

the staining in the HN4V cells. The cells encoding the unphosphorylatable version of 

vimentin displayed a different pattern of keratin 14 staining. As seen with vimentin, these 

cells express keratin 14 in small packets as opposed to filaments. This further suggests that 

these mutated phosphorylation sites play a role in intermediate filament structure and/or 

assembly and/or trafficking.  

 

Overexpression of Vimentin is Important in HN4 Biological Properties 

 In order to determine whether the overexpression of vimentin affects the phenotype 

of HN4 cells, we assessed the growth of HN4 vimentin transfectants using MTT assays 

and cell counting. The cells with the wild-type or PKCe-phosphomimetic versions of 

vimentin showed a significant increase in growth when compared to the HN4V cells. 

Additionally, the cells with the unphosphorylatable version of vimentin showed a growth 

level very similar to the HN4V cells. These results suggest that vimentin phosphorylation 

might contribute positively to cell growth. A wound-closure (scratch) assay was performed 

on these cells as well, to test if the expression of vimentin altered or affected cell motility. 

We found that cells expressing the wild-type or PKCe-phosphomimetic versions of 

vimentin migrated at a faster rate than the HN4V cells and the cells with the 

unphosphorylatable version of vimentin. Thus, in addition to effects on proliferation, the 
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ability to phosphoryla te vimentin plays a part in cell motility. Other studies have shown 

that blocking vimentin in breast, head and neck, or colon cancer cells has significantly 

affected motility and migration. Integrins are important in communication between the 

cells and the extracellular matrix, and the pattern of integrins is frequently altered during 

tumor progression (Zhang et al., 2009). For example, squamous carcinoma cells that have 

increased proliferation frequently express higher levels of a6ß4. When a6ß4 integrin binds to 

an extracellular ligand, it is phosphorylated on tyrosine residues and combines with the 

adaptor proteins Shc and Grb2. This leads to activation of Ras, which causes activation of 

both Ras-Erk and Rac-Jnk signaling pathways. These pathways mediate immediate-early 

gene transcription and cell cycle progression (Mainiero et al., 1997).  Additionally, Ras is 

capable of signaling through PI3K and Rho GTPases, which can work together with 

transforming growth factor-ß to induce EMT (Guarino, 2007). Based on studies by Ivaska 

et al. (2005), altered phosphorylation of vimentin may influence integrin signaling and, 

thus, impact growth and motility. 

 

Effect of Vimentin Expression on E-cadherin in HN4 Cells 

 E-cadherin is a calcium-binding transmembrane glycoprotein. The extracellular 

domain interacts with adjacent cell receptors, and the intracellular domain interacts with 

catenins.  E-cadherin is the major molecule in the adherens junction, and it plays an 

important role in EMT because of its interaction with ß-catenin (Voulgari & Pintzas, 

2009). ß-catenin interacts directly with the cytoplasmic N-terminal domain of E-cadherin 

(Ziober et al., 2001). In tumorigenesis, E-cadherin is frequently inactivated or silenced by 
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various mechanisms., including repression by transcription factors ZEB1 and ZEB2 

(Korpal, Lee, Hu, & Kang, 2008).  

 We decided to investigate the presence of E-cadherin in the HN4 cells with 

vimentin overexpression. E-cadherin was present in all four cells lines, but the appearance 

of E-cadherin was varied. The E-cadherin staining in the cells encoding the wild-type 

version of vimentin was most similar to the HN4V cells. The cells with the PKCe-

phosphomimetic version of vimentin showed E-cadherin in the cytoplasm, but it was also 

contained in isolated packets. These packets were consistent amongst the entire sample. 

The E-cadherin staining in the cells containing the unphosphorylatable version of vimentin 

was very diverse. Some of these cells displayed E-cadherin in packets as seen in the cells 

with the PKCe-phosphomimetic version of vimentin. Another observation in these cells 

was slight polarization of the E-cadherin. Again, this polarization was only seen in the 

altered E-cadherin. Others showed the E-cadherin in large packets. The E-cadherin 

expression was clearly disrupted. 

One study of HNSCC cells showed that activation of Src, a protein tyrosine kinase, 

was correlated with decreased expression of E-cadherin and the detection of vimentin. The 

expression of E-cadherin in well-differentiated tumors was found with weak p-Src 

expression and a lack of vimentin expression. However, high levels of activated Src and 

the presence of vimentin were found in poorly-differentiated tumors, along with a lack of 

E-cadherin expression. This study also demonstrated that E-cadherin was expressed in the 

membrane and cytoplasm in some carcinomas, which indicates qualitative and quantitative 

changes in tumor cell expression of E-cadherin (Mandal et al., 2008). It is possible that E-
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cadherin is present, but the junctional complex is defective, which allows for the cells to be 

more invasive (Ziober et al., 2001). Other studies have shown that while expression of E-

cadherin remained relatively constant in oral squamous cell carcinoma cells, the expression 

of intermediate filaments and integrins did change (Ghosh et al., 2002).  

  

Inhibition of NF-?B Affects Growth in HN12 Cells 

 Abnormal expression of NF-?B has been described in many cancers, including 

head and neck, prostate, lung and pancreatic adenocarcinomas and can enhance survival 

(Min, Eddy, Sherr, & Sonenshein, 2008). Inhibition of NF-?B resulted in decreased 

proliferation of HN12 cells. It also caused a decrease in vimentin mRNA expression. 

Reduced proliferation could be a result of the decrease in vimentin expression. However, it 

is also possible that the decreased proliferation caused by the NF-?B inhibitor is caused by 

the lack of transcription of other genes regulated by NF-?B. NF-?B regulates genes 

encoding proteins involved in cell growth, such as cyclin D1 (Min et al., 2008). Cyclin D1 

is an important regulator of cell proliferation, and it is commonly up-regulated in 

tumorigenesis (Witzel, Koh, & Perkins, 2010). 

NF-?B transcription factors play an important role in head and neck cancers, and 

they are commonly overexpressed in these cancers. 85% of HNSCC patients have shown 

increased nuclear localization of NF-?B (Stadler et al., 2008). Active NF-?B is found in 

the nucleus, and it can be inhibited by I?B keeping it contained in the cytoplasm. The 

transcription of several genes is regulated by NF-?B, including cytokines, growth factors, 

cell adhesion molecules, and pro-/antiapoptotic proteins (Lee et al., 2007). Studies have 
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also shown that NF-?B transcription factors are able to repress keratin expression 

(Blumenberg, 2006). Since these NF-?B transcription factors are frequently present in 

metastatic cells, we were interested in determining the effect of an NF-?B inhibitor on 

HN12 cells. Other studies have shown inhibition of NF-?B resulting in inhibited tumor cell 

survival, proliferation, migration, angiogenesis, and tumorigenesis in squamous cell 

carcinoma (Loercher et al., 2004).  

 

5-Aza-dC Affects Growth of HN12 Cells 

The Wnt signaling pathway is able to promote tumor growth by altering cell 

proliferation and differentiation. DKK3 is a Wnt antagonist, and when Wnt signaling is 

inhibited, ß-catenin is phosphorylated and targeted for degradation. The catenins are 

responsible for transduction of extracellular contacts between cadherins during epithelial 

reorganization. ß-catenin is able to translocate to the nucleus where it affects gene 

transcription, and recent studies have shown that it can also act as an oncogene.  There are 

reports of high ß-catenin expression in both colon carcinoma cells and melanoma cells 

(Ziober et al., 2001). ß-catenin staining in normal fibroblasts and endothelial cells is 

restricted to the cytoplasm and/or cell membranes. In normal epithelial cells, it is found 

only in the cell membrane, and it is predominantly located in the nucleus of mesenchymal 

cells (Voulgari & Pintzas, 2009). ß-catenin accumulation in the cytoplasm and 

translocation to the nucleus is associated with epithelial cell migration and processes 

involved in EMT (Gilles et al., 2003). Studies have shown that DKK3 is expressed in 

normal adult tissues, but the DKK3 gene is repressed in several human cancer cell lines 
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(Yu et al., 2009). Previous research in our lab showed reduced expression of DKK3 in 

HN12 cells (Miyazaki et al., 2006). Thus, we wanted to investigate the effect of 5-Aza-dC 

on HN12 cells to determine if cell growth was altered by the presence of this 

demethylating agent. The presence of 5-Aza-dC should remove the methylation repression 

on DKK3 and allow DKK3 to inhibit Wnt signaling in these cells. Our results show a 

decrease in cell growth as a result of treatment with 5-Aza-dC. The re-expression of DKK3 

to inhibit Wnt signaling and prevent ß-catenin translocation to the nucleus in these HN12 

cells may have contributed to this decrease in cell growth.  

Some cancers exhibit decreased DKK3 expression due to hypermethylation of the 

promoter (Kobayashi et al., 2002). DKK3 expression is commonly repressed in gastric and 

colorectal cancers due to promoter methylation, and this is correlated with poor patient 

prognosis. When heavily methylated and silenced cell lines from colon and gastric cancer 

were treated with 5-Aza-dC, a demethylating agent that inhibits DNA-methyltransferase 

activity, and trichostatin A (histone deacetylase inhibitor), the expression of DKK3 was 

restored. This implies that CpG methylation was responsible for DKK3 repression in these 

cells. DKK3 expression has caused growth inhibition in lung cancer cells, osteosarcoma 

cells, and digestive cancer cells, which suggests DKK3 may function as a tumor suppressor 

(Yu et al., 2009).  

 After observing a decrease in growth of HN12 cells in the presence of NF-?B 

inhibitor or 5-Aza-dC, we wanted to determine the combined effect on HN12 cells. Cell 

growth was decreased in cells grown in the presence of both NF-?B inhibitor and 5-Aza-

dC. However, no additive effect was apparent. Instead, the decrease seen with both 
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treatments resembled the treatment with the NF-?B inhibitor alone. This suggests that they 

may target the same pathway. This is consistent with previous studies, which show that in 

Wnt signaling when GSK-3ß is inhibited, the NF-?B inhibitor, I?Ba, is targeted by 

ubiquitin for destruction (Bachelder, Yoon, Franci, de Herreros, & Mercurio, 2005).  This 

suggests that Wnt signaling could activate NF-?B. However, further study could be done 

using a smaller concentration of the NF-?B inhibitor. This would eliminate the possibility 

of maximum inhibition being achieved by NF-?B inhibitor alone.  

 Additionally, we investigated vimentin expression in HN12 cells treated with the 

NF-?B inhibitor, 5-Aza-dC, or a combined treatment. Our western blot showed decreased 

vimentin expression in HN12 cells treated with all three conditions. Treatment with 5-Aza-

dC showed the largest decrease in vimentin expression, but the decrease seen with 

treatment of the NF-?B inhibitor or the NF-?B inhibitor combined with 5-Aza-dC was very 

similar. We also observed a change in vimentin expression using immunofluorescence. 

The control HN12 cells showed vimentin filaments throughout the cytoplasm. However, 

this filament structure was altered in HN12 cells treated with NF-?B inhibitor or 5-Aza-

dC. First, vimentin expression was decreased under all three conditions. Secondly, 

vimentin was not expressed in long filaments. Instead, the staining showed short squiggles, 

which suggests that vimentin filament assembly was disrupted. These findings are 

consistent with our hypothesis that Wnt signaling plays a role in vimentin expression 

during EMT. When the Wnt signaling pathway is inhibited, by removing promoter 

methylation on DKK3 with 5-Aza-dC treatment, the level of vimentin expression is 

decreased.  
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DKK3 Knockdown in Vimentin-negative HN4 Cells 

 HN4 cells were previously generated in our lab that express DKK3 shRNA. The 

clones displaying the largest inhibition of DKK3 were chosen for further study. We 

performed a western blot to confirm the DKK3 knockdown, and we also determined 

vimentin expression in these cell lines. Our results showed vimentin expression in HN12 

and HN4 shDKK3 #1 cells. This supports our hypothesis that Wnt signaling plays a role in 

vimentin expression. By inhibiting DKK3, Wnt signaling was activated in these HN4 

shDKK3 #1 cells and vimentin was expressed. The presence of vimentin was not detected 

in the HN4 cells. Vimentin expression was not present in the HN4 shDKK3 #4 cells either, 

which is not surprising since our western blot showed this was not a strong DKK3 

knockdown. Since DKK3 is a secreted glycoprotein, conditioned medium was collected 

from HN4 and HN4 shDKK3 cells and immunoprecipitated with a DKK3 antibody to 

determine DKK3 secretion from these cells. Studies done in human islet cells have shown 

that DKK3 expression in pancreatic B cells is characteristic of a secreted protein (Welters 

& Kulkarni, 2008). Our immunoprecipitation showed secretion of DKK3 in the HN4 and 

HN4 shDKK3 medium. Although the expression was low, the level seen in the HN4 

shDKK3 conditioned medium was reduced compared to the HN4 cells. Further study will 

need to examine the effect of DKK3 repression on keratin 14 expression.  
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Future Studies 

 In this study, we have shown that overexpression of vimentin in vimentin-negative 

HN4 cells causes changes in cell growth, motility, and keratin 14 expression. These 

changes may be due to altered vimentin phosphorylation. To determine that PKC 

phosphorylation of vimentin is responsible for these biological changes, these vimentin 

overexpressing cells could be treated with a PKC inhibitor, such as bisindolylmaleimide I 

(BIM-I). Studying proliferation and migration in cells treated with BIM-I would allow us 

to determine if the effects of vimentin overexpression can be overridden. However, to 

determine whether vimentin is causing keratin 14 changes at the gene expression level, we 

could perform a promoter deletion assay. This would allow us to determine the regions of 

the keratin promoter necessary for transcriptional repression. We could also perform a 

chromatin immunoprecipitation (ChIP) assay to determine whether specific transcription 

factors are bound to the keratin promoter. Additionally, we could investigate whether the 

overexpression of vimentin and inhibition of keratin have a combined effect on EMT. For 

example, keratin expression could be repressed using shRNA.  

 Immunofluorescence showed altered E-cadherin expression in the HN4 cells with 

vimentin overexpression. This suggests that mutations in these vimentin phosphorylation 

sites can affect junctional proteins. Further investigation of E-cadherin by western blot and 

qRT-PCR would determine whether expression is increased or decreased in these cells. 

Additionally, the levels of E-cadherin should be assessed when these cells are treated with 

BIM-I.  
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 Our study also revealed HN12 cells grown in the presence of a NF-?B inhibitor or 

5-Aza-dC showed decreased growth. We are interested in determining whether the result 

seen with the combined presence of the NF-?B inhibitor and 5-Aza-dC is due to the high 

concentration of NF-?B inhibitor. To investigate this, we will use a lower concentration of  

the NF-?B inhibitor, since it showed a similar effect on growth when compared to 5-Aza-

dC. If the two treatments are synergistic, there should be a decreased level of growth that is 

smaller than what is observed with the individual treatments of the NF-?B inhibitor or 5-

Aza-dC.  

Additionally, we should investigate the effects of NF-?B inhibitor and 5-Aza-dC 

treatments on vimentin and keratin 14 expression in HN12 cells. This can be explored 

using a variety of techniques, such as western blotting, qRT-PCR, and 

immunofluorescence. We would predict that 5-Aza-dC would remove the methylation 

repression on the Wnt antagonist DKK3 and block Wnt signaling in these HN12 cells. 

Since this would be expected to cause degradation of ß-catenin, we should compare the 

level of ß-catenin in HN12 cells and HN12 cells treated with 5-Aza-dC. We could assess 

the presence of ß-catenin by western blotting and immunofluorescence. Repression of ß-

catenin in these HN12 cells should result in a decrease of vimentin expression and an 

increase of keratin 14 expression.  

Furthermore, inhibiting DKK3 expression in HN4 cells should activate Wnt 

signaling in these vimentin-negative cells. We would like to explore the effect of repressed 

DKK3 expression on vimentin, keratin 14, and ß-catenin expression in HN4 cells. These 

experiments would allow us to further determine the role of Wnt signaling in EMT.  
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